Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 414 - 414
1 Sep 2012
Chaudhury S Holland C Porter D Vollrath F Carr A
Full Access

Introduction

The pathophysiology of high failure rates following rotator cuff tendon repairs, particularly massive tears, is not fully understood. Collagen structural changes have been shown to alter tendon thermal and mechanical properties. Thermal changes in small biopsies, detected by differential scanning calorimetry (DSC) can help to quantify collagen structural differences in torn rotator cuff tendons. This study aimed to form a quantitative rather than qualitative assessment, of whether differences in collagen structure and integrity existed between small biopsies of normal, small and massive rotator cuff tears using DSC.

Methods

Thermal properties were measured for 27 human biopsies taken intra-operatively from normal, small, and massive rotator cuff tendon tears. 3 samples were taken from each patient and subjected to a modulated temperature ramp between 20–80°C at a rate of 2°C per minute with 0.318°C amplitude. The melting temperature (TM) is proposed to represent amide-amide hydrogen bond breakage and resulting protein backbone mobility. Denaturing temperature (TD) reportedly corresponds to the temperature at which the proteins fall out of solution. Denaturation enthalpy (H) should correlate with the amount of triple helical structure. Based upon a pre-study power calculation, this study had 90% power to detect a 10% difference in melting and denaturation temperature between groups with alpha=0.05.

1 specimen per patients was also frozen and cryosectioned and polarised light microscopy was used for quantitative validation. The effect of tear size on heat related parameters were performed using a one-way ANOVA test. A student's unpaired t-test was used to search for differences between individual groups (small tears, massive tears and normal tendons).