header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Spine

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 34 - 34
1 Feb 2018
Richardson S Hodgkinson T Hoyland J
Full Access

Background

Currently, there is a focus on the development of cell based therapies to treat intervertebral disc (IVD) degeneration, particularly for regenerating/repairing the central region, the nucleus pulposus (NP). Recently, we demonstrated that GDF6 promotes NP-like differentiation in mesenchymal stem cells (MSCs). However, bone marrow- (BM-MSCs) and adipose- (Ad-MSCs) showed differential responses to GDF6, with Ad-MSCs adopting a more NP-like phenotype. Here, we investigated GDF6 signalling in BM-MSCs and Ad-MSCs, with the aim to improve future IVD stem cell therapies.

Methods

GDF6 receptor expression in patient-matched BM-MSCs and Ad-MSCs (N=6) was profiled through western blot and immunocytochemistry (ICC). GDF6 signal transduction was investigated through stimulation with 100 ng ml−1 GDF6 for defined time periods. Subsequently smad1/5/9 phosphorylation and alternative non-smad pathway activation (phospho-p38; phospho-Erk1/2) was analysed (western blot, ELISA). Their role in inducing NP-like gene expression in Ad-MSCs was examined through pathway specific inhibitors.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 6 - 6
1 Feb 2018
Richardson S Hodgkinson T White L Shakesheff K Hoyland J
Full Access

Background

Stem cell therapy has been suggested as a potential regenerative strategy to treat IVD degeneration and GDF6 has been shown to differentiate adipose-derived stem cells (ASCs) into an NP-like phenotype. However, for clinical translation, a delivery system is required to ensure controlled and sustained GDF6 release. This study aimed to investigate the encapsulation of GDF6 inside novel microparticles (MPs) to control delivery and assess the effect of the released GDF6 on NP-like differentiation of human ASCs.

Methods

GDF6 release from PLGA-PEG-PLGA MPs over 14 days was determined using BCA and ELISA. The effect of MP loading density on collagen gel formation was assessed through SEM and histological staining. ASCs were cultured in collagen hydrogels for 14 days with GDF6 delivered exogenously or via microspheres. ASC differentiation was assessed by qPCR for NP markers, glycosaminoglycan production (DMMB) and immunohistochemistry.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 35 - 35
1 Feb 2018
Richardson S Hodgkinson T Shen B Diwan A Hoyland J
Full Access

Background

Signalling by growth differentiation factor 6 (GDF6/BMP13) has been implicated in the development and maintenance of healthy NP cell phenotypes and GDF6 mutations are associated with defective vertebral segmentation in Klippel-Feil syndrome. GDF6 may thus represent a promising biologic for treatment of IVD degeneration. This study aimed to investigate the effect of GDF6 in human NP cells and critical signal transduction pathways involved.

Methods

BMP receptor expression profile of non-degenerate and degenerate human NP cells was determined through western blot, immunofluorescence and qPCR. Phosphorylation statuses of Smad1/5/9 and non-canonical p38 MAPK and Erk1/2 were assessed in the presence/absence of pathway blockers. NP marker and matrix degrading enzyme gene expression was determined by qPCR following GDF6 stimulation. Glycosaminoglycan and collagen production were assessed through DMMB-assay and histochemical staining.