This study investigated confocal laser scanning microscopy (CLSM) as a novel method of imaging of chondrocytes on a collagen membrane used for articular cartilage repair. Cell viability and the effects of surgery on the cells were assessed. Cell images were acquired under four conditions: 1, Pre-operative 2, After handling 3, Heavily grasped with forceps 4, Cut around the edge. Live and dead cell stains were used. Images were obtained for cell counting and morphology. Mean cell density was 1.12–1.68 ± 0.22 × 106 cells/cm2 in specimens without significant trauma (n=25 images), this decreased to 0.253 × 106 cells/cm2 in the specimens that had been grasped with forceps (p <0.001) (5 images). Cell viability on delivery grade membrane was 86.8±2.1%. The viability dropped to 76.3 ± 1.6% after handling and 35.1 ± 1.7% after crushing with forceps. Where the membrane was cut with scissors, there was a band of cell death where the viability dropped to 17.3 ± 2.0% compared to 73.4 ± 1.9% in the adjacent area (p <0.001). Higher magnification revealed cells did not have the rounded appearance of chondrocytes. CLSM can quantify and image the fine morphology of cells on a MACI membrane. Careful handling of the membrane is essential to minimise chondrocyte death during surgery.