header advert
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 5 - 5
1 Feb 2016
Coon T Hernandez A Conditt M
Full Access

Introduction

Bi-compartmental knee arthroplasty (BKA) is an alternative to total knee arthroplasty (TKA) for degenerative joint disease when present in only two compartments. BKA spares the cruciate ligaments and preserves bone in the healthy compartment, possibly leading to better knee kinematics and clinical outcomes when compared to TKA. While BKA is a technically demanding procedure when performed with manual instrumentation, robotic assistance allows for accurate implant placement and soft tissue balancing of the joint. Robotic unicompartmental knee arthroplasty (UKA) has shown favourable clinical outcomes and survivorship at short term (2 year) follow up compared to manual UKA. The purpose of this study is to evaluate the short term functional outcomes and survivorship of patients undergoing robotically assisted BKA.

Methods

45 patients (48 knees) were identified in an initial and consecutive single surgeon series receiving robotically assisted BKA to correct disease in the medial and patellofemoral compartments. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and functional outcomes (using the patient portion of the Knee Society Score). 9 patients were lost to follow up and 1 patient was deceased. 35 patients (38 knees) at a minimum two year follow up enrolled in the study for an enrolment rate of 79%. There are 22 male patients and 13 female patients; the average age at time of surgery is 67.0 ± 6.8 and the average BMI is 29.5 ± 4.6. Five patients in this series also qualified for a 5 year follow up assessment.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 49 - 49
1 Jan 2016
Conditt M Coon T Hernandez A Branch S
Full Access

INTRODUCTION

Bicompartmental knee arthroplasty (BKA) is an alternative to total knee arthroplasty (TKA) for degenerative joint disease when present in only two compartments. BKA spares the cruciate ligaments and preserves bone in the healthy compartment, possibly leading to better knee kinematics and clinical outcomes when compared to TKA. While BKA is a technically demanding procedure when performed with manual instrumentation, robotic assistance allows for accurate implant placement and soft tissue balancing of the joint. Robotic unicompartmental knee arthroplasty (UKA) has shown favorable clinical outcomes and survivorship at short term (2 year) follow up compared to manual UKA. The purpose of this study is to evaluate the short term functional outcomes and survivorship of patients undergoing robotically assisted BKA.

METHODS

45 patients (48 knees) were identified in an initial and consecutive single surgeon series receiving robotically assisted BKA to correct disease in the medial and patellofemoral compartments. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and functional outcomes (using the patient portion of the Knee Society Score). 9 patients were lost to follow up and 1 patient was deceased. 35 patients (38 knees) at a minimum two year follow up enrolled in the study for an enrollment rate of 79%. There are 22 male patients and 13 female patients; the average age at time of surgery is 67.0 ± 6.8 and the average BMI is 29.5 ± 4.6. Five patients in this series also qualified for a 5 year follow up assessment.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 15 - 15
1 Oct 2012
Sasaki S Daher S Hernandez A Albuquerque R Resende M Queiroz R Moscovich H
Full Access

The purpose of the study was to compare prospectively and randomly two ACL reconstruction single bundle techniques, one referred to as traditional and the other referred to as anatomical, where the coronal angulation of the femoral tunnel aimed a more horizontal position at 2 and 10 o'clock. Orthopilot® System (Aesculap, Tuttlingen, Germany) was used to assist tunnel positioning in order to obtain and register translational and rotational stability.

Eighteen patients (14 men and 4 women), average age 33.8 years (range 18 to 49), with isolated ACL lesion were randomized in two groups, A (Conventional) and B (Anatomical). All patients were submitted to ACL navigated arthroscopic reconstruction with quadruple hamstrings grafts. Anteromedial portal access for femoral tunnel drilling was used in all patients. The tibial and femoral tunnels drillings were monitored by the Aesculap® Orthopilot Navigation System. In Group A, the femoral tunnel positioning aimed isometricity. In Group B, femoral tunnel was drilled at 25% of Blumensaat's line length from the posterior cortex, and 30° orientation in coronal plane. Initial and final Maximum Anterior tibial Displacement (MATD), Internal Tibial Rotation (ITR) and External Tibial Rotation (ETR) at 30° knee flexion data were recorded intra operatively by the navigation system.

No horizontal or rotational stability differences were found for MATD (p = 0.68), ITR (p = 014) and ETR (0.13). This study did not support the hypothesis that a more anatomical positioning leads to better rotational or anterior stability.