This study used model-based radiostereometric analysis (MBRSA) to compare migration of a recently introduced cementless hip stem to an established hip stem of similar design. Novel design features of the newer hip stem included a greater thickness of hydroxyapatite coating and a blended compaction extraction femoral broach. Fifty-seven patients requiring primary total hip arthroplasty (THA) were enrolled at a single centre. Patients were randomized to receive either an Avenir collarless stem and Trilogy IT cup (ZimmerBiomet) or a Corail collarless stem and Pinnacle cup (DePuy Synthes) via a posterior or lateral approach. Both stems are broach-only femoral bone preparation. RSA beads (Halifax Biomedical) were inserted into the proximal femur during surgery. Patients underwent supine RSA imaging a 6 weeks (baseline), 6, 12, and 24 months following surgery. The primary study outcome was total subsidence of the hip stem from baseline to 24 months as well as progression of subsidence between 12 and 24 months. These values were compared against published migration thresholds for well-performing hip stems (0.5mm). The detection limit, or precision, of MBRSA was calculated based on duplicate examinations taken at baseline. Patient reported outcome measures were collected throughout the study and included the Oxford-12 Hip Score (OHS), EuroQoL EQ-5D-5L, Hip Osteoarthritis Score (HOOS) as well as visual analogue scales (VAS) for thigh pain and satisfaction. Analysis comprised of paired and unpaired t-tests with significance set at p≤0.05. Forty-eight patients (30 males) were included for analysis; 7 patients received a non-study hip stem intra-operatively, 1 patient suffered a traumatic dislocation within three weeks of surgery, and 1 patient died within 12 months post-surgery. RSA data was obtained for 45 patients as three patients did not receive RSA beads intra-operatively. Our patient cohort had a mean age of 65.9 years (±;7.2) at the time of surgery and body mass index of 30.5 kg/m2 (±;5.2). No statistical difference in total stem migration was found between the Avenir and Corail stems at 12 months (p=0.045, 95%CI: −0.046 to 0.088) and 24 months (p=0.936, 95% CI: −0.098 to 0.090). Progression of subsidence from 12-24 months was 0.011mm and 0.034mm for the Avenir and Corail groups which were not statistically different (p=0.163, 95%CI: −0.100 to 0.008) between groups and significantly less than the 0.5mm threshold (pNo statistically significant differences existed between study groups for any pre-operative function scores (p>0.05). All patients showed significant functional improvement from pre- to post-surgery and no outcome measures were different between study groups with exception of EQ-5D-5L health visual analogue scale at 12 months which showed marginally superior (p=0.036) scores in the Avenir group. This study was not powered to detect differences in clinical outcomes. This study has demonstrated no statistical difference in subsidence or patient-reported outcomes between the Corail hip stem and the more recently introduced Avenir hip stem. This result is predictable as both stems are of a triple-tapered design, are coated with hydroxyapatite, and utilize a broach-only bone preparation technique. Both stem designs demonstrate migration below 0.5mm suggesting both are low-risk for aseptic loosening in the long-term.
Proximal junctional kyphosis (PJK) is defined as adjacent segment kyphosis >10° between the upper instrumented vertebrae and the vertebrae 2 levels above following scoliosis surgery. There are few studies investigating the predictors and clinical sequelae involved with this relatively common complication. Our purpose was to determine the radiographic predictors of post-op PJK and to examine the association between PJK and pain/HRQOL following surgery for AIS. The Post-Operative Recovery after Scoliosis Correction: Home Experience (PORSCHE) study was a prospective multicenter cohort of AIS patients undergoing spinal fusion surgery. Pre-op and minimum 2 year f/u scoliosis and sagittal spinopelvic parameters (thoracic kyphosis–TK, lordosis–LL, pelvic tilt-PT, sacral slope-SS, pelvic incidence-PI) were measured and compared to numeric rating scale for pain (NRS) score, SRS-30 HRQOL and to the presence or absence of PJK (proximal junctional angle >100). Continuous and categorical variables were assessed using logistic regression and binomial variables were compared to binomial outcomes using chi-square. 163 (137 females) patients from 8 Canadian centers met inclusion criteria. At final f/u, PJK was present in 27 patients (17%). Pre-op means for PJK vs No PJK: Age 14.1 vs 14.7yr; females 85 vs 86%; scoliosis 57±22 vs 62±15deg; TK 28±18 vs 19±16deg ∗, LL 62±11 vs 60±12deg, PT 8±12 vs 10±10deg, SS 39±8 vs 41±9deg, PI 47±14 vs 52±13deg, SVA −9±30 vs −7±31mm. Final f/u for PJK vs No PJK: Scoliosis 20±11 vs 18±8deg, final TK 26±12 vs 19±10deg∗, LL 60±11 vs 57±12deg, PT 9±12 vs 12±13deg, SS 39±9 vs 41±9deg, PI 48±17 vs 52±14deg, SVA −23±26 vs −9±32mm∗. Significant findings: Pre-op kyphosis >40deg has an odds ratio (OR) of 4.41 (1.50–12.92) for developing PJK∗. The presence of PJK was not associated with any significant differences in NRS or SRS-30. ∗denotes p<0.05. This prospective multicenter cohort of AIS patients demonstrated a 17% risk of developing PJK. Pre-op thoracic kyphosis >40deg was associated with the development of PJK; however, the presence of PJK was not associated with increased pain or decreased HRQOL.
Total hip arthroplasty (THA) is a highly successful procedure achieving excellent clinical outcomes beyond 10 years post-surgery. With exception of periprosthetic infection, dislocation is the most common cause of failure in THA. A novel reverse total hip (RTH) replacement has been developed to address dislocation through reversal of the typical THA articulation in which a femoral cup and acetabular ball interlock at the extremes of motion to enhance mechanical stability in all planes. The purpose of this study was to assess the safety and efficacy of this novel RTH in a series of 22 patients and to monitor implant fixation using radiostereometric analysis (RSA). Twenty two patients with end-stage osteoarthritis of the hip were enrolled between 2017 and 2019 at a single center. All surgeries were performed by a group of four high-volume fellowship-trained arthroplasty surgeons. All patients received at least 1 acetabular cup screw and RSA markers inserted into the acetabulum and proximal femur. Follow-up time points were 6 weeks, 6, 12 and 24 months and included patient reported outcome measures (HOOS, Oxford-12, Harris Hip Score, SF-36 and Satisfaction) as well as RSA assessment.Introduction
Methods
The evolution of operative technology has allowed correction of complex spinal deformities. Neurological deficits following spinal instrumentation is a devastating complication and the risk is especially high in those with complex sagittal and coronal plane deformities. Prior to intraoperative evoked potential monitoring, spinal cord function was tested using the Stagnara Wake up test, typically performed after instrumentation once the desired correction has been achieved. This test is limited as it does not reflect the timeframe in which the problem occurred and it may be dangerous to some patients. Intraoperative neuromonitoring allows timely feedback of the effect of instrumentation and curve correction on the spinal cord. Pedicle screws that are malpositioned can result in poor fixation or neuronal injury. Evoked EMG monitoring can aid in accurate placement. A positive EMG response can alert the surgeon to a potential pedicle breech and allow them to reassess the placement of their hardware intraoperatively. The stimulation threshold is affected by the amount of surrounding bone acting as an insulator to electrical conduction and is variable in different regions of the spine. In the non-deformed, lumbar spine stimulation thresholds have been established. Such guidelines have not been well-developed for the thoracic spine, or for severely scoliotic spines. Thus our primary objective was to compare the stimulation threshold of the apical pedicle on the concave side to the stimulation threshold of the pedicles at the upper and lower instrumented levels. Intraoperative EMG stimulation thresholds were done at 192 apical pedicles on the concave side of the deformity and then compared to those thresholds found at 169 terminal level pedicles. Only pedicles for which a stimulation threshold was found were reported and excluded those where a breech was suspected. The lowest stimulation required for an EMG response was documented to a maximum stimulation of 20 mA. The mean threshold at the apex was 16.62 milliamps (mA) compared to 18.25mA at the terminal levels. This was compared with the t-test and showed a statistically significant difference (p<0.05). In this study we report only the thresholds for the concave side, the pedicle that is most likely to be reduced in size. The threshold for stimulation is reduced compared to those seen at the highest and lowest instrumented level. Most of the apexes are located in the mid-thoracic spine with the highest instrumented levels being in the high thoracic spine and the lowest levels being in the lumbar spine. This study provides preliminary evidence that the apical, concave pedicle has a lower threshold than the end pedicles and one cannot rely on established thresholds from different areas of the spine. The surgeon should be cognisant of these differences when instrumenting at the apical level. Ongoing work is examining the convex apex threshold as well as the relationship between the effect of age and a diagnosis other than adolescent idiopathic scoliosis.
We have developed a list of 281 competencies deemed to be of importance in the training of orthopaedic surgeons. A stratified, randomised selection of non-university orthopaedic surgeons rated each individual item on a scale 1 to 4 of increasing importance. Summary statistics across all respondents were given. The mean scores and Complex procedures were rated to be less important. The structure, delivery and implementation of the curriculum needs further study. Learning activities are ‘driven’ by the evaluation of competencies and thus competency-based learning may soon be in the forefront of training programmes.