Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 72 - 72
1 Dec 2016
Heard S Miller S Schachar R Kerslake S
Full Access

Chondral defects on the patella are a difficult problem in the young active patient and there is no consensus on how to treat these injuries. Fresh osteochondral allografts are a valid option for the treatment of full-thickness osteochondral defects and can be used to restore joint function and reduce pain. The primary purpose of this study was to investigate the clinical and subjective outcomes of a series of patients following fresh osteochondral allograft transplantation for isolated chondral defects of the patella.

A series of 5 patients underwent surgery using an open approach for graft transplantation. A strict protocol for the allograft tissue was followed. Transplant recipients must be aged <60, have a full-thickness, isolated chondral lesion and have failed previous traditional treatments. The fresh allografts are hypothermically stored at 4°C in X-VIVO10 media for up to 30 days to maintain cartilage viability. Pre- and post-operative clinical measures including knee stability, range of motion, and quadriceps girth were completed. Post-operative plain radiographs were completed including weight-bearing AP, lateral and skyline views. Patient-centred outcome measures including the Knee Osteoarthritis Outcome Score (KOOS) and the Knee Society Score (KSS) were gathered a minimum of 1-year post-operative. Descriptive and demographic data were collected for all patients. A paired t-test was employed to determine the difference between the pre-operative and post-operative outcomes.

All patients were female, with a mean age of 27.4 (SD 3.65). Knee ligament stability was similar pre- and post-operatively. Knee ROM assessment of flexion and extension demonstrated a less than 10° increase from pre to post-operative. Quadriceps girth measurements demonstrated a mean change of 0.5 cm from pre- to post-operative for the surgical limb. Post-operative radiographs demonstrated incorporation of the graft in 4/5 cases within 6-months of surgery. One patient developed fragmentation of the graft after 18-months, and one patient had a subsequent trochleoplasty for persistent pain. The mean KOOS domain scores demonstrated significant improvement (p<0.05) as follows: Symptoms pre-op = 28.57, post-op = 55; Pain pre-op 28.89, post-op = 57.22; ADLs pre-op = 48.92, post-op = 66.18; Sports/Recreation pre-op = 6, post-op = 32; and QoL pre-op = 12.5, post-op = 42.5. Mean pre-op surgical versus non-surgical limb KSS scores were 107.4 and 179 respectively. The mean post-op surgical versus non-surgical limb KSS scores were 166 and 200.

Isolated chondral defects of the patella can cause substantial pain, reduced function, and can be challenging to address surgically. This series of 5 cases demonstrated improved function, KOOS and KSS for 4/5 patients. To our knowledge this is a novel biological procedural technique for this problem, which has shown promising results making it a viable treatment option for young active patients with osteochondral defects of the patella.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 67 - 67
1 Dec 2016
Schachar R Heard S Hiemstra L Buchko G Lafave M Kerslake S
Full Access

The aim of an anterior cruciate ligament (ACL) reconstruction is to regain functional stability of the knee following ACL injury, ideally allowing patients to return to their pre-injury level of activity. The purpose of this study was to assess clinical, functional and patient-centered outcomes a minimum of 1-year following ACL reconstruction. This study assessed for relationships between post-operative ACL graft laxity, functional testing performance, and scores on the ACL Quality of Life (ACL-QOL) questionnaire.

A prospective cohort study design (n = 1938) was used to gather data on clinical laxity, functional performance and quality of life outcomes. Post-operative ACL laxity assessment using the Lachman and Pivot-shift tests was completed independently on each patient by a physiotherapist and an orthopaedic surgeon at a minimum of 12-months post-operatively. A battery of functional tests was performed including single leg balance, single leg landing, 4 single-leg hop tests, and tuck jumps. The hop tests provided a comparative assessment of limb-to-limb function including a single hop for distance, a 6m timed hop, a triple hop for distance, and a triple crossover hop. Patients com¬pleted the ACL-QOL at the 12-month and 24-month post-operative appointments. Descriptive and demographic data were collected for all patients. The degree and frequency of post-operative laxity was calculated. A Pearson r correlation coefficient was employed to determine the relationship between the presence of post-operative laxity and the ACL-QOL scores, between the battery of functional tests and the ACL-QOL scores, as well as between the functional tests and the laxity assessments.

Data was gathered for 1512/1938 patients (78%). At clinical assessment a minimum of 1-year post-operatively, 13.2% of patients demonstrated a positive Lachman and/or Pivot-shift test. The mean ACL-QOL score for patients with no ACL laxity was 80.8/100, for patients with a positive Lachman or Pivot-shift test the mean score was 72.3/100, and for patients with both positive Lachman and Pivot-shift tests the score was 66.9/100. Pearson r correlation coefficient demonstrated a significant relationship between the presence of ACL graft laxity and ACL-QOL score (p < 0.05). Statistically significant correlations were evident between all of the operative limb single-leg hop tests and the post-operative ACL-QOL scores (p < 0.05). Statistically significant correlations were evident between the operative limb triple-hop tests and presence of ACL graft laxity (p < 0.05).

Patients with clinically measurable ACL graft laxity demonstrate lower ACL-QOL scores as well as lower performance on a battery of functional tests. The disease-specific outcome measure was strongly correlated to the patient's ability to perform single-limb functional tests, indicating that the ACL-QOL score accurately predicted level of function.