header advert
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 944 - 950
1 Jul 2017
Fan G Fu Q Zhang J Zhang H Gu X Wang C Gu G Guan X Fan Y He S

Aims

Minimally invasive transforaminal lumbar interbody fusion (MITLIF) has been well validated in overweight and obese patients who are consequently subject to a higher radiation exposure. This prospective multicentre study aimed to investigate the efficacy of a novel lumbar localisation system for MITLIF in overweight patients.

Patients and Methods

The initial study group consisted of 175 patients. After excluding 49 patients for various reasons, 126 patients were divided into two groups. Those in Group A were treated using the localisation system while those in Group B were treated by conventional means. The primary outcomes were the effective radiation dosage to the surgeon and the exposure time.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_8 | Pages 2 - 2
1 Jun 2015
Mossadegh S He S Parker P
Full Access

Various injury severity scores exist for trauma; it is known that they do not correlate accurately to military injuries. A promising anatomical scoring system for blast pelvic and perineal injury led to the development of an improved scoring system using machine-learning techniques. An unbiased genetic algorithm selected optimal anatomical and physiological parameters from 118 military cases. A Naïve Bayesian (NB) model was built using the proposed parameters to predict the probability of survival. Ten-fold cross validation was employed to evaluate its performance. Our model significantly out-performed Injury Severity Score (ISS), Trauma ISS, New ISS and the Revised Trauma Score in virtually all areas; Positive Predictive Value 0.8941, Specificity 0.9027, Accuracy 0.9056 and Area Under Curve 0.9059. A two-sample t-test showed that the predictive performance of the proposed scoring system was significantly better than the other systems (p<0.001). With limited resources and the simplest of Bayesian methodologies we have demonstrated that the Naïve Bayesian model performed significantly better in virtually all areas assessed by current scoring systems used for trauma. This is encouraging and highlights that more can be done to improve trauma systems not only for the military, but also in civilian trauma.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 110 - 110
1 Feb 2012
Hussain N Freeman B Watkins R He S Webb J
Full Access

Our prospective observational study of patients treated for Thoracolumbar Adolescent Idiopathic Scoliosis (AIS) by anterior instrumentation aimed at investigating the correlation between the radiographic outcome and the recently-developed scoliosis research society self-reported outcomes instrument (SRS-22) which has been validated as a tool for self-assessment in scoliosis patients. Previous patient based questionnaires demonstrated poor correlation with the radiological parameters.

Materials and Methods

Pre-operative, post-operative and two years follow-up radiographs of 30 patients were assessed. Thirteen radiographic parameters including Cobb angles and balance were recorded. The percentage improvements for each were noted. The SRS-22 questionnaire was completed by all patients at final follow-up. Correlation was sought between each radiographic parameter, total SRS score and each of the five domains by quantifying Pearson's Correlation Coefficient (r).

Results

Percentage improvement in primary Cobb angle (r = 0.052), secondary Cobb angle (r = 0.165), apical vertebra translation of the primary curve (r = -0.353), thoracic kyphosis (r = 0.043) and lumbar lordosis (r = 0.147) showed little or no correlation with the SRS-22 total score and its five individual domains. Significant inverse correlation was found between the upper instrumented vertebra angle and at follow-up and SRS-22 (r = -0.516). The same was true for Sagittal plumb line shift at final follow up (r = -0.447).