The aim of this study is to test the hypothesis that three grades of sagittal compensation for standing posture (normal, compensated, and decompensated) correlate with health-related quality of life measurements (HRQOL). A total of 50 healthy volunteers (normal), 100 patients with single-level lumbar degenerative spondylolisthesis (LDS), and 70 patients with adult to elderly spinal deformity (deformity) were enrolled. Following collection of demographic data and HRQOL measured by the Scoliosis Research Society-22r (SRS-22r), radiological measurement by the biplanar slot-scanning full body stereoradiography (EOS) system was performed simultaneously with force-plate measurements to obtain whole body sagittal alignment parameters. These parameters included the offset between the centre of the acoustic meatus and the gravity line (CAM-GL), saggital vertical axis (SVA), T1 pelvic angle (TPA), McGregor slope, C2-7 lordosis, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL, sacral slope (SS), pelvic tilt (PT), and knee flexion. Whole spine MRI examination was also performed. Cluster analysis of the SRS-22r scores in the pooled data was performed to classify the subjects into three groups according to the HRQOL, and alignment parameters were then compared among the three cluster groups.Aims
Methods
Dislocation is one of the most important complications in THA. Dual mobility cup (DMC) inserts reduce the risk for dislocation after total hip arthroplasty by increasing the oscillation angle. A lower rate of dislocation with use of a DMC insert has been reported in different studies. But there is no available research that clearly delineates the stability advantages of DMC inserts in primary THA. The aim of our study was to evaluate the area of the safe zone for a DMC insert, compared to a fixed insert for different anteversion angles of the femoral component. A model of the pelvis and femur were developed from computed tomography images. We defined the coordinate system of the pelvis relative to the anterior pelvic plane and the coordinate system of the femur relative to the posterior condylar plane. In our model, we simulated a positive anteversion position of the acetabular cup. The lower border for cup inclination is 50°. The safe zone was evaluated for the following range of motion of the implant: 120° of flexion, 90° of flexion 30° of internal rotation, 30° of extension, 40° of abduction, 40° of adduction, and 30° of external rotation. (Fig.1) The safe zone was calculated for both a fixed insert and a DMC insert over a pre-determined range of three-dimensional motion, and the effect of increasing the anteversion position of the femoral component from 5° to 35° quantified. The ratio of the safe zone for a DMC insert to a fixed insert was calculated.INTRODUCTION
Material and Methods
Computer navigation systems are quite sophisticated intra-operative support systems for the precise placement of acetabular or femoral components in THA. However, few studies have addressed the clinical benefits derived from using a navigation system to achieve precise placement of the implants. The purpose of this study is to investigate the early dislocation rate of navigation-assisted primary THA through a posterior approach in order to clarify the short-term benefit of using a computer navigation system. We retrospectively reviewed the early dislocation rate (within 12 months after surgery) of 475 consecutive primary cementless or hybrid THAs with femoral head sizes ≦32mm performed via posterior approach. There were 85 men and 390 women, with a mean age of 60 years (17 to 88) at operation. Preoperative diagnoses included osteoarthritis in 384 hips, osteonecrosis in 45 hips, and others in 46 hips (ex. RA, trauma, infection, congenital disease). All THAs were planned using a 3D templating system based on the combined anteversion theory, performed by single surgeon through a posterior approach with repair of the posterior capsule, assisted by a CT-based surface matching type computer navigation system for cup implantation. All patients were directly followed up at least 1 year after surgery. We classified all 475 joints into four groups: normal or mildly deformed hips (Group A; 308 joints, ex. primary OA, Crowe group 1, osteonecrosis), moderately deformed hips (Group B; 97 joints, ex. Crowe group 2, protrusio acetabuli, Perthes like deformity), severely deformed hips (Group C; 53 joints, ex. Crowe group 3 or 4, ankylosis, fused hip), and neuromuscular and cognitive disorders (Group D; 17 joints), and examined the dislocation rate for each group.Introduction
Methods
The number of total hip arthroplasties has been increasing worldwide, and it is expected that revision surgeries will increase significantly in the near future. Although reconstructing normal hip biomechanics with extensive bone loss in the revision surgery remains challenging. The custom−made acetabular component produced by additive manufacturing, which can be fitted to a patient's anatomy and bone defect, is expected to be a predominant reconstruction material. However, there have been few reports on the setting precision and molding precision of this type of material. The purpose of this study was to validate the custom−made acetabular component regarding postoperative three−dimensional positioning and alignment. Severe bone defects (Paprosky type 3A and 3B) were made in both four fresh cadaveric hip joints using an acetabular reamer mimicking clinical cases of acetabular component loosening or osteolysis in total hip arthroplasty. On the basis of computed tomography (CT) after making the bone defect, two types of custom−made acetabular components (augmented type and tri−flanged type) that adapted to the bone defect substantially were produced by an additive manufacturing machine. A confirmative CT scan was taken after implantation of the component, and then the data were installed in an analysis workstation to compare the postoperative component position and angle to those in the preoperative planning.Introduction
Methods
Post cam structure, which is the main structure of posterior-stabilized design (PS), is useful to realize the intrinsic stability of a knee prosthesis replaced for a case with the severe degeneration. A large size post might, however, shorten the range of knee motion. On the other hand, retrieval studies sometimes reveal the ultrahigh molecular weight polyethylene (UHMWPE) deformation or severe failure of the tibial post of PS knee. Strength of a tibial post of available design is obviously insufficient to prevent the severe deformation. Therefore, minimally required size of the post should be clarified for polyethylene inserts. In the present study, we performed finite element (FE) analysis assumed the mechanical conditions of a tibial post in a PS knee and aimed to design criterion of a post of polyethylene insert of a knee prosthesis. The shape of one commercially available knee prosthesis was referred as a posterior-stabilized knee prosthesis. The contour of the metallic femoral component was traced and digitized by hand. The contour of the UHMWPE insert was digitized by a micro computed tomography apparatus. Three dimensional finite elements were generated by a modeling software (Simpleware, Ltd. UK) as total 83000 four-noded tetrahedral elements. The bottom of the tibial insert was fully constrained. Load on femoral component was assumed to realize the tibial post impingement under several kinds of knee motions. Posterior load 100 N or 500N at the 10 degree hyperextension, anterior load 500N or 1000N during 120 degree flexion were applied (Fig. 1). The software of FE analysis was LS-DYNA ver.971 (Livemore Software Technology Corp. USA). The hardware was Endeaver Pro-4500 (EPSON Corp. Japan). The distributed values of von Mises stress and plastic strain of the tibial post were shown as the results of the analysis.Introduction
Method
It has recently been reported that the transverse
acetabular ligament (TAL) is helpful in determining the position
of the acetabular component in total hip replacement (THR). In this
study we used a computer-assisted navigation system to determine
whether the TAL is useful as a landmark in THR. The study was carried
out in 121 consecutive patients undergoing primary THR (134 hips),
including 67 dysplastic hips (50%). There were 26 men (29 hips)
and 95 women (105 hips) with a mean age of 60.2 years (17 to 82)
at the time of operation. After identification of the TAL, its anteversion
was measured intra-operatively by aligning the inferomedial rim
of the trial acetabular component with the TAL using computer-assisted
navigation. The TAL was identified in 112 hips (83.6%). Intra-observer reproducibility
in the measurement of anteversion of the TAL was high, but inter-observer
reproducibility was moderate. Each surgeon was able to align the trial component according
to the target value of the angle of anteversion of the TAL, but
it was clear that methods may differ among surgeons. Of the measurements
of the angle of anteversion of the TAL, 5.4% (6 of 112 hips) were
outliers from the safe zone. In summary, we found that the TAL is useful as a landmark when
implanting the acetabular component within the safe zone in almost
all hips, and to prevent it being implanted in retroversion in all
hips, including dysplastic hips. However, as anteversion of the
TAL may be excessive in a few hips, it is advisable to pay attention
to individual variations, particularly in those with severe posterior
pelvic tilt. Cite this article:
We examined the reliability of radiological findings in predicting segmental instability in 112 patients (56 men, 56 women) with a mean age of 66.5 years (27 to 84) who had degenerative disease of the lumbar spine. They underwent intra-operative biomechanical evaluation using a new measurement system. Biomechanical instability was defined as a segment with a neutral zone >
2 mm/N. Risk factor analysis to predict instability was performed on radiographs (range of segmental movement, disc height), MRI (Thompson grade, Modic type), and on the axial CT appearance of the facet (type, opening, vacuum and the presence of osteophytes, subchondral erosion, cysts and sclerosis) using multivariate logistic regression analysis with a forward stepwise procedure. The facet type was classified as sagittally orientated, coronally orientated, anisotropic or wrapped. Stepwise multivariate regression analysis revealed that facet opening was the strongest predictor for instability (odds ratio 5.022, p = 0.009) followed by spondylolisthesis, MRI grade and subchondral sclerosis. Forward stepwise multivariate logistic regression indicated that spondylolisthesis, MRI grade, facet opening and subchondral sclerosis of the facet were risk factors. Symptoms evaluated by the Short-Form 36 and visual analogue scale showed that patients with an unstable segment were in significantly more pain than those without. Furthermore, the surgical procedures determined using the intra-operative measurement system were effective, suggesting that segmental instability influences the symptoms of lumbar degenerative disease.
We report an artificial elbow joint with a novel type radial component that we have designed that is now at the stage of trial production. The humeral component is a trochlea capitulum replacement type with a stem. The ulnar component with a stem has an articular surface distributed not only on the trochlea surface but also on the capitulum surface of the humeral component, and has another concave articular surface toward the radial component. The radial component also has a stem and has a spherical convex articular surface. This surface of the radial component does not assume the conventional anatomical morphology, but the convexity is designed to fit the concave articular surface of the ulnar component. In other words, the new artificial elbow joint is a functionally dissociated type, in which flexion-extension is achieved by the humeroulnar joint while rotation is done via the radioulnar joint. The newly designed artificial joint was used to replace the cadaveric elbow joint. Radiographic studies were conducted to observe the compatibility of each component during extension-flexion and rotationmovements. By replacing the cadaveric elbow joint with the newly designed artificial elbow joint and performing manual extension-flexion simultaneous with pronation-supination, the flexion positions of the humeral component and ulnar component were not affected, and stable compatibility was obtained for the radial component and ulnar component. Artificial elbow joints with a radial component have been reported by various authors. However, since the humeroradial joint possesses two movement axes for both flexion-extension and rotation, good compatibility with the humeroulnar joint is necessary. Aradial component that simply adopts the anatomical morphology does no tachieve good humeroradial joint compatibility. The functionally dissociated artificial elbow joint that we have designed is expected to offer a clue to solve these problems.
We have performed simple bone grafting in four elderly patients with pain due to unstable pseudarthroses in the osteoporotic spine after compression fracture. At operation, we observed abnormal movement of the affected vertebral body which was covered with a hypertrophic membrane; this seemed to inhibit the blood supply to the lesion. The thick membrane and avascular granulation in the false joint were excised and bone grafting carried out. Symptoms were dramatically improved immediately after operation and bony union was confirmed in the three surviving patients.