Anatomical atlases document classical safe corridors for the
placement of transosseous fine wires through the calcaneum during
circular frame external fixation. During this process, the posterior
tibial neurovascular bundle (PTNVB) is placed at risk, though this
has not been previously quantified. We describe a cadaveric study
to investigate a safe technique for posterolateral to anteromedial
fine wire insertion through the body of the calcaneum. A total of 20 embalmed cadaveric lower limbs were divided into
two groups. Wires were inserted using two possible insertion points
and at varying angles. In Group A, wires were inserted one-third
along a line between the point of the heel and the tip of the lateral
malleolus while in Group B, wires were inserted halfway along this
line. Standard dissection techniques identified the structures at
risk and the distance of wires from neurovascular structures was measured.
The results from 19 limbs were subject to analysis.Aims
Materials and Methods
Open fractures are managed in the UK guided by standards issued by the BOAST-4 standards. A study was undertaken to evaluate compliance with these standards in a regional trauma unit (MTU), and compared following upgrading to a Major Trauma Centre (MTC). Compliance was assessed against 11 of the 15 BOAST-4 standards (7, 9, 10 and 15 were not assessed). Patients were included with open diaphyseal tibial fractures (AO 42-), admitted to the department in the year before and the year after the Major Trauma Centre opened.Introduction
Methods
Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a cadaver study, 20 formalin-treated legs were divided into two groups. Wires were inserted into the distal quarter of the tibia using two possible corridors and standard techniques of dissection identified the distance of the wires from neurovascular structures. In both groups the posterior tibial neurovascular bundle was avoided. In group A the peroneal artery was at risk. In group B this injury was avoided. Comparison of the groups showed a significant difference (p <
0.001). We recommend the Retro-Fibular wire technique whereby wires are inserted into the tibia mid-way between the posteromedial border of the fibula and the tendo Achillis, at 30° to 45° to the sagittal plane, and introduced from a posterolateral to an anteromedial position. Subsequently, when using this technique in 30 patients, we have had no neurovascular complications or problems relating to tethering of the peroneal tendons.