header advert
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 80 - 80
1 Apr 2018
Sugand K van Duren B Wescott R Carrington R Hart A
Full Access

Background

Hip fractures cause significant morbidity and mortality, affecting 70,000 people in the UK each year. The dynamic hip screw (DHS) is used for the osteosynthesis of extracapsular neck of femur fractures, a procedure that requires complex psychomotor skills to achieve optimal lag screw positioning. The tip-apex distance (TAD) is a measure of the position of the lag screw from the apex of the femoral head, and is the most comprehensive predictor of cut-out (failure of the DHS construct). To develop these skills, trainees need exposure to the procedure, however with the European Working Time Directive, this is becoming harder to achieve. Simulation can be used as an adjunct to theatre learning, however it is limited. FluoroSim is a digital fluoroscopy simulator that can be used in conjunction with workshop bones to simulate the first step of the DHS procedure (guide-wire insertion) using image guidance. This study assessed the construct validity of FluoroSim. The null hypothesis stated that there would be no difference in the objective metrics recorded from FluoroSim between users with different exposure to the DHS procedure.

Methods

This multicentre study recruited twenty-six orthopaedic doctors. They were categorised into three groups based on the number of DHS procedures they had completed as the primary surgeon (novice <10, intermediate 10≤x<40 and experienced ≥40). Twenty-six participants completed a single DHS guide-wire attempt into a workshop bone using FluoroSim. The TAD, procedural time, number of radiographs, number of guide-wire retires and cut-out rate (COR) were recorded for each attempt.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 81 - 81
1 Apr 2018
Sugand K Wescott R van Duren B Carrington R Hart A
Full Access

Background

Training within surgery is changing from the traditional Halstedian apprenticeship model. There is need for objective assessment of trainees, especially their technical skills, to ensure they are safe to practice and to highlight areas for development. In addition, due to working time restrictions in both the UK and the US, theatre time is being limited for trainees, reducing their opportunities to learn such technical skills. Simulation is one adjunct to training that can be utilised to both assess trainees objectively, and provide a platform for trainees to develop their skills in a safe and controlled environment. The insertion of a dynamic hip screw (DHS) relies on complex psychomotor skills to obtain an optimal implant position. The tip-apex distance (TAD) is a measurement of this positioning, used to predict failure of the implant. These skills can be obtained away from theatre using workshop bone simulation, however this method does not utilise fluoroscopy due to the associated radiation risks. FluoroSim is a novel digital fluoroscopy simulator that can recreate digital radiographs with workshop bone simulation for the insertion of a DHS guide-wire. In this study, we present the training effect demonstrated on FluoroSim. The null hypothesis states that no difference will be present between users with different amounts of exposure to FluoroSim.

Methods

Medical students were recruited from three London universities and randomised into a training (n=23) and a control (n=22) cohort. All participants watched a video explanation of the simulator and task and were blinded to their allocation. Training participants completed 10 attempts in total, 5 attempts in week one, followed by a one week wash out period, followed by 5 attempts in week 2. The control group completed a single attempt each week. For each attempt, 5 metrics were recorded; TAD, procedural time, number of radiographs, number of guide-wire retires and cut-out rate (COR).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 79 - 79
1 Apr 2018
van Duren B Wescott R Sugand K Carrington R Hart A
Full Access

Background

Hip fractures affect 1.6 million people globally per annum, associated with significant morbidity and mortality. A large proportion are extracapsular neck of femur fractures, treated with the dynamic hip screw (DHS). Mechanical failure due to cut-out is seen in up to 7% of DHS implants. The most important predictor of cut-out is the tip-apex distance (TAD), a numerical value of the lag screw”s position in the femoral head. This distance is determined by the psychomotor skills of the surgeon guided by fluoroscopic imaging in theatre. With the current state of surgical training, it is harder for junior trainees to gain exposure to these operations, resulting in reduced practice. Additionally, methods of simulation using workshop bones do not utilise the imaging component due to the associated radiation risks. We present a digital fluoroscopy software, FluoroSim, a realistic, affordable, and accessible fluoroscopic simulation tool that can be used with workshop bones to simulate the first step of the DHS procedure. Additionally, we present the first round of accuracy tests with this software.

Methods

The software was developed at the Royal National Orthopaedic Hospital, London, England. Two orthogonally placed cameras were used to track two coloured markers attached to a DHS guide-wire. Affine transformation matrices were used in both the anterior-posterior (AP) and cross table lateral (CTL) planes to match three points from the camera image of the workshop bone to three points on a pre-loaded hip radiograph. The two centre points of each marker were identified with image processing algorithms and utilised to digitally produce a line representing the guide-wire on the two radiographs. To test the accuracy of the system, the software generated 3D guide-wire apex distance (GAD) (from the tip of the guide-wire to a marker at the centre of calibration) was compared to the same distance measured with a digital calliper (MGAD). In addition, the same accuracy value was determined in a simulation scenario, from 406 attempts by 67 medical students.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives

Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces.

Methods

In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 45 - 45
1 Oct 2016
Niu J Henckel J Hart A Liu* C
Full Access

Osteoarthritis (OA) affects bone cartilage and underlying bone. Mechanically, the underlying bone provides support to the healthy growth of the overlying cartilage. However, with the progress of OA, bone losses and cysts occur in the bone and these would alter the biomechanical behaviour of the joint, and further leading to bone remodelling adversely affect the overlying cartilage.

Human femoral head and femoral condyle were collected during hip or knee replacement operation due to the end stage of osteoarthritis (age 50–70), and the cartilage patches were graded and marked. A volunteer patient, with minor cartilage injury in his left knee while the right knee is intact, was used as control. Peripheral quantitative computed tomography (pQCT) was used to scan the bone and to determine the volumetric bone mineral density (vBMD) distribution.

The examination of retrieved tissue explants from osteoarthritic patients revealed that patches of cartilage were worn away from the articular surface, and patches of intact cartilage were left. The cysts, ranging from 1 to 10mm were existed in all osteoarthritic bones, and were located close to cartilage defects in the weight-bearing regions, and closely associated with the grade of cartilage defect as measured by pQCT. The bone mineral density (vBMD) distribution demonstrated that the bones around cysts had much higher vBMD than the trabecular bone away from the cysts. Compared to the subchondral bone under thicker cartilage, subchondral bone within cartilage defect has higher vBMD. This may result from the mechanical stimulation as a result of bone-bone direct contact with less protection of cartilage in cartilage defect regions.

This study showed an association between cartilage defect and subchondral bone mineral density distribution. Cysts were observed in all osteoarthritic samples and they are located close to cartilage defects in the weight-bearing regions. Cartilage defect altered the loading pattern of the joints, this leading to the bone remodelling and resultant bone structural changes as compared to the normal bone tissues.

This work was financially supported by The ARUK Proof of Concept Award (grant no: 21160).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 12 - 12
1 Oct 2016
Unadkat R Riehle M Burchmore R Hart A
Full Access

Tissue expansion is a technique used by plastic and restorative surgeons to cause the body to grow additional skin, bone or other tissues. For example, distraction osteogenesis has been widely applied in lower limb surgery (trauma / congenital), and congenital upper limb reconstruction (e.g. radial dysplasia). This complex and tightly regulated expansion process can thus far only be optimised by long-term animal or human experimentation.

Here the intent is to develop an in vitro model of tissue expansion that will allow to both optimise the extension regime (µm/h, continuous/ intermittent) and investigate using proteomic techniques which molecular pathways are involved in its regulation. Cells cultured onto sheets of polymer (PCL) can be stretched at very low, adjustable speeds, using a stepper motor and various 3D printed and laser cut designs. The system utilises plastic flow of the polymer, enabling the material to stay extended upon strain being released.

Tensile tests have displayed the plastic behaviour of the polymer sheet when stretched, and digital image correlation (DIC) has been used to analyse homogeneity of the strain field. Further analysis involving nuclear localisation of yes-associated protein (YAP) aims to link cell response to this strain field.

Nuclear orientation analysis has demonstrated a morphological response to strain (1 mm/day) in comparison to not being stretched, and this is in the process of being linked to nanoscale changes of the substrate (using atomic force microscopy) during the stretching regime. Future work will identify how strain is affecting the cell cycle, before a mass tagging approach is used to identify protein changes induced by strain.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 49 - 49
1 Aug 2013
O'Flaherty E Bell S McKay D Wellington B Hart A Hems T
Full Access

To collate and present epidemiological data collected by Scottish National Brachial Injury Service over the past decade.

The Brachial Plexus Injury Service is based at the Victoria Infirmary, Glasgow and has been a designated National Service since 2004. It provides an integrated multidisciplinary service for traumatic brachial plexus injury and plexus tumours. The Service maintains an active archive recording details of all clinical referrals and procedures conducted by the Service over the past decade. The data presented here was derived from analysis of this database and information contained in the National Brachial Plexus Injury Service Annual Report 2010/11 & 2011/12.

Data shows that there has been a steady rate in the number of referrals to the Service, particularly since 2004, with an average of 50 cases referred per annum. Of these, approximately 25% required formal surgical exploration for traumatic injury and a further 10% required surgery for brachial plexus tumour removal. The vast majority of referred cases are treated non-operatively, with appropriate support from specialist physiotherapy and occupational therapy. Referrals to the Service appear well distributed from around Scotland. However, data from 2011 shows that Greater Glasgow & Clyde is the greatest individual source of referrals and subsequent hospital admissions for surgical treatment. The commonest mechanism of brachial plexus injury appears to be secondary to falls and motorcycle RTA. Using the Disabilities of the Arm, Shoulder and Hand (DASH) Score, improved functional outcomes have been demonstrated consistently in patients who have undergone surgery for brachial plexus injuries within the Service.

Over the past decade, the Brachial Plexus Injury Service has had a steady patient referral record from across the Scotland, particularly Glasgow. Data indicates that there is an on-going clinical need for provision of the service with improved outcomes and reduced functional disability in patients treated by the service. It is envisaged that data from the Service will also act as a useful planning model for the provision of UK national services in the future.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 11 - 11
1 Mar 2013
Matthies A Suarez A Karbach L Henckel J Skinner J Noble P Hart A
Full Access

There are several component position and design variables that increase the risk of edge loading and high wear in metal-on-metal hip resurfacing (MOM-HR). In this study we combined all of these variables to calculate the ‘contact patch to rim distance’ (CPRD) in patients undergoing revision of their MOM-HR. We then determined whether CPRD was more strongly correlated with component wear and blood metal ion levels, when compared to any other commonly reported clinical variable. This was a retrospective study of 168 consecutively collected MOM-HR retrieval cases. All relevant clinical data was documented, including pre-revision whole blood cobalt and chromium ion levels. Wear of the bearing surfaces was then measured using a roundness-measuring machine. We found four variables to be significantly (p < 0.05) correlated with component wear and blood metal ion levels: (1) cup inclination angle, (2) cup version angle, (3) arc of cover, and (4) CPRD. The correlations between CPRD and both wear and ion levels were significantly stronger than those seen with any other variable (all p < 0.0001). Our study has shown that CPRD is the best predictor of component wear and blood metal ion levels, and may therefore be a useful parameter to help determine those patients who are at risk of high wear and require more frequent clinical surveillance.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 13 - 13
1 Mar 2013
Matthies A Racasan R Bills P Panagiotidou A Blunt L Skinner J Blunn G Hart A
Full Access

Material loss at the head-stem taper junction may contribute to the high early failure rates of stemmed large head metal-on-metal (LH-MOM) hip replacements. We sought to quantify both wear and corrosion and by doing so determine the main mechanism of material loss at the taper. This was a retrospective study of 78 patients having undergone revision of a LH-MOM hip replacement. All relevant clinical data was recorded. Corrosion was assessed using light microscopy and scanning electron microscopy, and graded according to a well-published classification system. We then measured the volumetric wear of the bearing and taper surfaces. Evidence of at least mild taper corrosion was seen in 90% cases, with 46% severely corroded. SEM confirmed the presence of corrosion debris, pits and fretting damage. However, volumetric wear of the taper surfaces was significantly lower than that of the bearing surfaces (p = 0.015). Our study supports corrosion as the predominant mechanism of material loss at the taper junction of LH-MOM hip replacements. Although the volume of material loss is low, the ionic products may be more biologically active compared to the particulate debris arising from the bearing surfaces.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 14 - 14
1 Mar 2013
Hart A Matthies A Racasan R Bills P Panagiotidou A Blunt L Blunn G Skinner J
Full Access

It has been speculated that high wear at the head-stem taper may contribute to the high failure rates reported for stemmed large head metal-on-metal (LH-MOM) hips. In this study of 53 retrieved LH-MOM hip replacements, we sought to determine the relative contributions of the bearing and taper surfaces to the total wear volume. Prior to revision, we recorded the relevant clinical variables, including whole blood cobalt and chromium levels. Volumetric wear of the bearing surfaces was measured using a coordinate measuring machine and of the taper surfaces using a roundness measuring machine. The mean taper wear volume was lower than the combined bearing surface wear volume (p = 0.015). On average the taper contributed 32.9% of the total wear volume, and in only 28% cases was the taper wear volume greater than the bearing surface wear volume. Despite contributing less to the total material loss than the bearing surfaces, the head-stem taper junction remains an important source of implant-derived wear debris. Furthermore, material loss at the taper is likely to involve corrosion and it is possible that the material released may be more biologically active than that from the bearing surface.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 10 - 10
1 Mar 2013
Nyga A Lignowski M Hart A
Full Access

The mechanism of adverse tissue reaction to implant derived cobalt and chromium is unknown. It is possible that only one of these metals, cobalt, plays critical role in the failure of MOM implant. Cobalt ions are known to stabilize hypoxia inducible factor (HIF) 1α, which is involved in inflammatory pathway involving upregulation of BNIP3, GLUT1, HO-1 and COX-2 genes. This study used human monocytic cell line U937 to test the cytotoxic and inflammatory response to cobalt and chromium in form of ions and nanoparticles (NP) at clinically relevant doses. MTT assay was used to assess cytotoxic potential of metals for up to 24 hours. Gene expression was studied using qPCR and protein expression using Western Blot technique. Inflammatory cytokine release was studied using ELISA assay. Cytotoxicity study showed similar toxicity cobalt NP throughout the range of concentration 5–100μg/ml. Stabilization of HIF1α protein was observed after stimulation with cobalt ions and NP. This resulted in upregulation of GLUT1, BNIP3, HO-1 and COX-2 genes. Stimulation caused increased release in TNFα and inhibition of IL-10. No significant release of IL-1β was observed. Stimulation with chromium ions or NP did not cause any changes in cell viability, stabilization of HIF or cytokine release profile. Chromium NP caused upregulation of COX-2 after 6 hours of exposure. These results indicate significant role of cobalt in the inflammatory process and its potential as the cause of failure of MOM implants.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 100 - 100
1 May 2012
Bills P Underwood RJ Cann PM Hart A
Full Access

INTRODUCTION

There is increasing worldwide interest in the assessment of wear in explanted hip components. This is due is part to high profile failures of orthopaedic components in the US, whilst in the UK hip resurfacings have been experiencing a higher than expected failure rate. The reasons for these failures are not well understood, with data from the NJR suggesting the 43% of MoM resurfacing failures are unexplained.

Wear analysis is a vital tool in determining failure mechanisms and ultimately improving the longevity of joint replacements through improved design and manufacturing control. There are currently no relevant measurement standards for the evaluation of retrieved orthopaedic components. This paper will assess two of the most commonly used techniques namely roundness measurement and co-ordinate measurement. The advantages and disadvantages of both techniques are considered in this paper.

ROUNDNESS MACHINE

The Talyrond 365 is a stylus based roundness machine. The component is located on a rotating table and the stylus measures the deviation from a perfect circle as the component is slowly rotated. The Talyrond measures a single profile to an accuracy of 30 nm and up to 72,000 data points per revolution. The air spindle has a radial accuracy of <0.02 μm and the Talymin gauge a minimum resolution of 12 nm. Individual roundness profiles can be stitched together to build up 3D cylinder maps, allowing 3D pictures of sections of explanted hip components to be generated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 50 - 50
1 May 2012
Underwood RJ Cann PM Skinner J Hart A
Full Access

SUMMARY

The relationship between component position, wear rate and edge loading was investigated for 115 explanted current generation Metal-on-Metal (MoM) hips. Edge wear was detected in: 63% of all hips; and 48% of those with cups positioned within Lewinnek's box.

BACKGROUND

The link between steeply inclined cups (>55 degrees) and edge loading is known for all common hip bearing couples. Edge loading is associated with high rates of wear, and has been linked to premature failure of hips.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 65 - 65
1 May 2012
Hart A Lloyd G Sabah S Sampson B Underwood R Cann P Henckel J Cobb PJ Lewis A Porter M Muirhead-Allwood S Skinner J
Full Access

SUMMARY

We report a prospective study of clinical data collected pre, intra and post operation to remove both cup and head components of 118 failed, current generation metal on metal (MOM) hips. Whilst component position was important, the majority were unexplained failures and of these the majority (63%) had cup inclination angles of less than 55 degrees. Poor biocompatibility of the wear debris may explain many of the failures.

BACKGROUND

Morlock et al reported a retrospective analysis of 267 MOM hips but only 34 head and cup couples (ie most were femoral neck fractures) and without data necessary to define cause of failure. The commonest cause of failure in the National Joint Registry (NJR) is unexplained.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 28 - 28
1 May 2012
Masters J Sandison A Diss T Lali F Skinner J Hart A
Full Access

Metal-on-metal (MOM) hip resurfacings release chromium and cobalt wear debris into the surrounding joint. The hip tissue taken from failed MOM hips shows specific histological features including a subsurface band-like infiltrate of macrophages with particulate inclusions, perivascular lymphocytic infiltrate and fibrin exudation. This tissue response has been called Aseptic Lymphocytic Vasculitis Associated Lesion (ALVAL).

There is a recognised carcinogenic potential associated with hexavalent chromium and epidemiological data from first generation MOM arthroplasties may suggest an increased incidence of haematological malignancy. The ALVAL type reaction includes a marked proliferation of lymphocytes in the perivascular space and thorough investigation of this lymphocytic response is warranted.

This study aims to further characterise the lymphocytic infiltrate using immunohistochemistry and to test clonality using polymerase chain reaction (PCR).

Tissues from revised all cause failed MOM hip arthroplasties (n=77) were collected and analysed initially using routine H&E staining. Those that met the diagnostic criteria of ALVAL described above (n=34) were further stained with a panel of immunohistochemical markers (CD3, CD4, CD8 (T-cell markers) and CD20 (B-cell marker)). 10 representative ALVAL cases were selected and sent for gene rearrangement studies using PCR to determine whether the lymphocytes were polyclonal or monoclonal in nature.

The analysis of the lymphocytic aggregates in ALVAL, showed a mixed population of B and T cells. Within the aggregates, there was a predominance of B cells (CD20) over T cells (CD3). Of the 10 cases which were analysed by PCR, 7 were suitable for interpretation. None of these cases showed evidence of monoclonal lymphocyte proliferation.

The carcinogenic potential of wear debris from MOM hips, particularly affecting the haematopoietic system should be investigated. This study has shown a predominantly B-lymphocyte response in tissues surrounding MOM hips which is polyclonal. Although the numbers are small, the study suggests an immune mediated response in MOM hip tissue and excludes a neoplastic proliferation.

However, long term follow up of patients with MOM hips may be prudent.