We wished to examine the effectiveness of tibial lengthening
using a two ring Ilizarov frame in skeletally immature patients.
This is a potentially biomechanically unstable construct which risks
the loss of axial control. We retrospectively reviewed a consecutive series of 24 boys and
26 girls, with a mean age of 8.6 years (4 to 14), who underwent
52 tibial lengthening procedures with a mean follow-up of 4.3 years
(4.0 to 16.9). Tibial alignment was measured before and after treatment
using joint orientation lines from the knee and a calculation of
the oblique plane axis.Aims
Patients and Methods
Spinopelvic parameters describe the orientation, shape, and morphology of the spine and pelvis. In children without spinal deformity, these parameters have been shown to change during the first ten years of life; however, spinopelvic parameters have yet to be defined in children with significant Early Onset Scoliosis (EOS). The purpose of this study is to examine the effects of EOS on sagittal spinopelvic alignment. Standing, lateral radiographs of 82 untreated patients with EOS greater than 50 degrees were evaluated. Sagittal spine parameters (sagittal balance, thoracic kyphosis (TK), lumbar lordosis (LL)) and sagittal pelvic parameters (pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), modified pelvic radius angle (PR)) were measured. These results were compared to those reported by Mac-Thiong et al (Spine, 2004) for a group of asymptomatic (i.e. without spinal deformity) children of similar age.Purpose
Method
Spinopelvic parameters describe the orientation, shape, and morphology of the spine and pelvis. In children without spinal deformity, these parameters change during the first 10 years of life; however, spinopelvic parameters need to be defined in children with significant early-onset scoliosis (EOS). The purpose of this study is to examine the effects of EOS on sagittal spinopelvic alignment. We hypothesise that sagittal spinopelvic parameters for patients with EOS will differ from age-matched children without spinal deformity. These values will act as a baseline for future studies and may predict postoperative complications such as proximal junctional kyphosis and implant failure in children being treated with growing systems. Standing, lateral radiographs of 82 untreated patients with EOS with Cobb angle greater than 50° were evaluated. Sagittal spine parameters (sagittal balance, thoracic kyphosis [TK], lumbar lordosis [LL]) and sagittal pelvic parameters (pelvic incidence [PI], pelvic tilt [PT], sacral slope [SS], and modified pelvic radius angle [PR]) were measured. These results were compared with those reported by Mac-Thiong and colleagues (Introduction
Methods
This longitudinal prospective study reports the 10-year results of arthroscopic, anterior cruciate ligament (ACL) reviewed. Four (4%) menisectomies were performed, 6 graft (7%) ruptures and 18 (20%) contralateral ACL ruptures occurred in the follow-up period. Ninety-seven percent of patients graded their knee function as normal or nearly normal and the median Lysholm knee score was 95 at 10-years. The proportion of patients participating in IKDC level I and II sports fell from 85% at 2-years to 45% at 10 years, 12% attributing the decrease to their knee. On laxity testing 85% and 93% had grade 0 on Lachman and pivot shift testing, respectively and 77% had <
3mm of anterior tibial displacement at 10 years. Kneeling pain increased to 58% of patients. 59% had no pain on strenuous activity with 33% of patients having a fixed flexion deformity at 10 years. Radiological examination at 10 years demonstrated osteoarthritic changes in 48% of patients. Factors predictive for the development of radiograhic osteoarthritis were increased age at operation and increased ligamentous laxity at 2 years as measured clinically and by KT 1000. As such, arthroscopic ACL reconstruction, employing patellar tendon, is not preventative of the development of osteoarthritis even when the confounding factors of meniscal, chondral and other ligamentous injury are excluded.
Degenerative joint disease (DJD) involves the proteolysis of many extracellular matrix molecules (ECM) present in articular cartilage and other joint tissues such as tendon, meniscus and ligaments. Recent research has identified key enzymes involved in the catabolism of ECM. Two classes of enzyme the Matrix Metalloproteinases (MMP’s) MMP-2, MMP-3, MMP-13 and the ADAMTS family (a disintegrin and metalloproteinase with thrombospondin motifs) of proteinases most notably, ADAMTS-1, -4 and −5, have been shown to be involved in the catabolism of ECM (such as type II collagen and cartilage aggrecan). The presence of several MMPs in the synovial fluid has been reported; however, little data has yet been gathered on the presence of ADAMTS-1, -4 or −5 (the aggrecanases) in synovial fluids. In this study we have used a recombinant artificial substrate and specific neoepitope antibodies that recognise either MMP- generated or aggrecanase -generated degradation products to measure the relative activity of these two enzyme families in the synovial fluid from human patients.