Revision total hip replacements are likely to have higher complication rates than primary procedures due to the poor quality of the original bone. This may be constrained to achieve adequate fixation strength to prevent future “aseptic loosening” [1]. A thin, slightly flexible, acetabular component with a three dimensional, titanium foam in-growth surface has been developed to compensate for inferior bone quality and decreased contact area between the host bone and implant by better distributing loads across the remaining acetabulum in a revision situation. This is assumed to result in more uniform bone apposition to the implant by minimizing stress concentrations at the implant/bone contact points that may be associated with a thicker, stiffer acetabular component, resulting in improved implant performance.[2] To assemble the liner to the shell, the use of PMMA bone cement is recommended at the interface between the polyethylene insert and the acetabular shell as a locking mechanism configuration may not be ideal due to the flexibility in the shell [3]. The purpose of this study was to quantify the mechanical integrity of a thin acetabular shell with a cemented liner in a laboratory bench-top total hip revision condition. Two-point loading in an unsupported cavity was created in a polyurethane foam block to mimic the contact of the anterior and posterior columns in an acetabulum with superior and inferior defects. This simulates the deformation in an acetabular shell when loaded anatomically [4]. The application has been extended to evaluate the fatigue performance of the Titanium metal foam Revision Non-Modular Shell Sequentially Cross Linked PE All-Poly Inserts and its influence on liner fixation.