Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 76 - 76
7 Aug 2023
Borque K Han S Gold J Sij E Laughlin M Amis A Williams A Noble P Lowe W
Full Access

Abstract

Introduction

Persistent medial laxity increases the risk of failure for ACL reconstruction. To address this, multiple reconstruction techniques have been created. To date, no single strand reconstruction constructs have been able to restore both valgus and rotational stability. In response to this, a novel single strand Short Isometric Construct (SIC) MCL reconstruction was developed.

Methods

Eight fresh-frozen cadaveric specimens were tested in three states: 1) intact 2) after sMCL and dMCL transection, and 3) after SIC MCL reconstruction. In each state, four loading conditions were applied at varying flexion angles: 90N anterior drawer, 5Nm tibial external rotation torque, 8Nm valgus torque, and combined 90N anterior drawer plus 5Nm tibial external rotation torque.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 77 - 77
7 Aug 2023
Borque K Han S Gold J Sij E Laughlin M Amis A Williams A Noble P Lowe W
Full Access

Abstract

Introduction

Historic MCL reconstruction techniques focused on the superficial MCL to restore valgus stability while overlooking tibial external rotation and the deep MCL. This study assessed the ability of a contemporary medial collateral ligament (MCL) reconstruction and a deep MCL (dMCL) reconstruction to restore rotational and valgus knee stability.

Methods

Six pairs fresh-frozen cadaveric knee specimens with intact soft tissue were tested in four states: 1) intact 2) after sMCL and dMCL sectioning, 3) contemporary MCL reconstruction (LaPrade et al), and 4) dMCL reconstruction. In each state, four loading conditions were applied at varying flexion angles: 8Nm valgus torque, 5Nm tibial external rotation torque, 90N anterior drawer, and combined 90N anterior drawer plus 5Nm tibial external rotation torque.