In primary total hip arthroplasty (THA) for patients with Crowe II or higher classes developmental dysplasia of the hip (DDH) or rapidly destructive coxopathy (RDC), the placement of the cup can be challenging due to superior and lateral acetabular bone defects. Traditionally, bone grafts from resected femoral heads were used to fill these defects, but bulk graft poses a risk of collapse, especially in DDH with hypoplastic femoral heads or in RDC where good quality bone is scarce. Recently, porous metal augments have shown promising outcomes in revision surgeries, yet reports on their efficacy in primary THA are limited. This study retrospectively evaluated 27 patients (30 hips) who underwent primary THA using cementless cups and porous titanium acetabular augments for DDH or RDC, with follow-up periods ranging from 2 to 10 years (average 4.1 years). The cohort included 22 females (24 hips) and 5 males (6 hips), with an average age of 67 years at the time of surgery. The findings at the final follow-up showed no radiographic evidence of loosening or radiolucency around the cups and augments, indicating successful biological fixation in all cases. Clinically, there was a significant improvement in the WOMAC score from an average of 39.1±14.7 preoperatively to 5.1±6.4 postoperatively. These results suggest that the use of cementless cups and porous titanium acetabular augments in primary THA for DDH and RDC can lead to high levels of clinical improvement and reliable biological fixation, indicating their potential as a viable solution for managing challenging acetabular defects in these conditions.
Femoral component anteversion is an important factor in the success of total hip arthroplasty (THA). This retrospective study aimed to investigate the accuracy of femoral component anteversion with the Mako THA system and software using the Exeter cemented femoral component, compared to the Accolade II cementless femoral component. We reviewed the data of 30 hips from 24 patients who underwent THA using the posterior approach with Exeter femoral components, and 30 hips from 24 patients with Accolade II components. Both groups did not differ significantly in age, sex, BMI, bone quality, or disease. Two weeks postoperatively, CT images were obtained to measure acetabular and femoral component anteversion.Aims
Methods
This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry. In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups.Aims
Methods
This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.Aims
Methods
The purposes of this study were to report the accuracy of stem anteversion for Exeter cemented stems with the Mako hip enhanced mode and to compare it to Accolade cementless stems. We reviewed the data of 25 hips in 20 patients who underwent THA through the posterior approach with Exeter stems and 25 hips in 19 patients with Accolade stems were matched for age, gender, height, weight, disease, and approaches. There was no difference in the target stem anteversion (20°–30°) between the groups. Two weeks after surgery, CT images were taken to measure stem anteversion. The difference in stem anteversion between the plan and the postoperative CT measurements was 1.2° ± 3.8° (SD) on average with cemented stems and 4.2° ± 4.2° with cementless stems, respectively (P <0.05). The difference in stem anteversion between the intraoperative measurements and the postoperative CT measurements was 0.75° ± 1.8° with Exeter stems and 2.2° ± 2.3° with Accolade stems, respectively (P <0.05). This study demonstrated a high precision of anteversion for Exeter cemented stems with the Mako enhanced mode and its clinical accuracy was better with the cemented stems than that with the cementless stems. Although intraoperative stem anteversion measurements with the Mako system were more accurate with the cemented stems than that with the cementless stem, the difference was about 1° and the accuracy of intra-operative anteversion measurements was quite high even with the cementless stems. The smaller difference in stem anteversion between the plan and postoperative measurements with the cemented stems suggested that stem anteversion control was easier with cemented stems under the Mako enhanced mode than that with cementless stems. Intraoperative stem anteversion measurement with Mako total hip enhanced mode was accurate and it was useful in controlling cemented stem anteversion to the target angle.
Pelvic incidence (PI) is considered an important anatomical parameter for determining the sagittal balance of the spine. The contribution of an abnormal PI to hip osteoarthritis (OA) remains controversial. In this study, we aimed to investigate the relationship between PI and hip OA, and the difference in PI between hip OA without anatomical abnormalities (primary OA) and hip OA with developmental dysplasia of the hip (DDH-OA). In this study, 100 patients each of primary OA, DDH-OA, and control subjects with no history of hip disease were included. CT images were used to measure PI, sagittal femoral head coverage, α angle, and acetabular anteversion. PI was also subdivided into three categories: high PI (larger than 64.0°), medium PI (42.0° to 64.0°), and low PI (less than 42.0°). The anterior centre edge angles, posterior centre edge angles, and total sagittal femoral head coverage were measured. The correlations between PI and sagittal femoral head coverage, α angle, and acetabular anteversion were examined.Aims
Methods
The purposes of this study were to evaluate the accuracy and feasibility of a robotic preparation for acetabular metal augments in patients with developmental dysplasia of the hip (DDH). Mako robotic arm reaming was used in 7 DDH to prepare the bony cavities for both Trident PSL cups and Tritanium acetabular wedge augments in six hips with Crowe 2 or 3 DDH. In CT-based planning, a properly sized cup was placed in the original acetabulum, and the same sized cup was also placed to fit the superolateral acetabular defect. The coordinates of the planned positions of cup and augment were recorded to manage the robotic arm reaming. After registration of the patient's pelvis, robotic reaming was performed first for the augment, then, for the cup by changing the target position of reaming as planned. The accuracy of the cup and augment placement was assessed on postoperative CT. To evaluate the feasibility of the robotic procedure, the OR time and blood loss were compared with those of 13 patients who received the same cup and augment systems with a conventional technique. All procedures were done without fracture or fixation failure. There were no differences in OR time or blood loss between the two procedures. Postoperative CT measurements of the distance between the cup center and the augment sphere center showed less than 2mm difference from the Mako preoperative planning. Although a longer time of follow up evaluation is mandatory, our robotic acetabular augment preparation technique is accurate and feasible.
Acetabular revision surgery is challenging due to severe bone defects. Burch-Schneider anti-protrusion cages (BS cage: Zimmer-Biomet) is one of the options for acetabular revision, however higher dislocation rate was reported. A computed tomography (CT)-based navigation system indicates us the planned direction for implantation of a cemented acetabular cup during surgery. A large diameter femoral head is also expected to reduce the dislocation rate. The purpose of this study is to investigate short-term results of BS cage in acetabular revision surgery combined with the CT-based navigation system and the use of large diameter femoral head. Sixteen hips of fifteen patients who underwent revision THA using allografts and BS cage between September 2013 and December 2017 were included in this study with the follow-up of 2.7 (0.1–5.0) years. There were 12 women and three men with a mean age of 78.6 years (range, 59–61 years). The cause of acetabular revision was aseptic loosening in all hips. The failed acetabular cup was carefully removed, and acetabular bone defect was graded using the Paprosky classification. Structural allografts were morselized and packed for all medial or contained defects. In some cases, solid allograft was implanted for segmental defects. BS cage was molded to optimize stability and congruity to the acetabulum and fixed with 6.5 mm titanium screws to the iliac bone. The inferior flange was slotted into the ischium. The upside-down trial cup was attached to a straight handle cup positioner with instrumental tracker (Figure 1) and placed on the rim of the BS cage to confirm the direction of the target angle for cement cup implantation under the CT-based navigation system (Stryker). After removing the cement spacer around the X3 RimFit cup (Stryker) onto the BS cage for available maximum large femoral head, the cement cup was implanted with confirming the direction of targeting angle. Japanese Orthopedic Association score (JOA score) of the hip was used for clinical assessment. Implant position, loosening, and consolidation of allograft were assessed using anterior and lateral radiographies of the pelvis.Introduction
Methods
Robotic-assisted hip arthroplasty helps acetabular preparation and implantation with the assistance of a robotic arm. A computed tomography (CT)-based navigation system is also helpful for acetabular preparation and implantation, however, there is no report to compare these methods. The purpose of this study is to compare the acetabular cup position between the assistance of the robotic arm and the CT-based navigation system in total hip arthroplasty for patients with osteoarthritis secondary to developmental dysplasia of the hip. We studied 31 hips of 28 patients who underwent the robotic-assisted hip arthroplasty (MAKO group) between August 2018 and March 2019 and 119 hips of 112 patients who received THA under CT-based navigation (CT-navi group) between September 2015 and November 2018. The preoperative diagnosis of all patients was osteoarthritis secondary to developmental dysplasia of the hip. They received the same cementless cup (Trident, Stryker). Robotic-assisted hip arthroplasty were performed by four surgeons while THA under CT-based navigation were performed by single senior surgeon. Target angle was 40 degree of radiological cup inclination (RI) and 15 degree of radiological cup anteversion (RA) in all patients. Propensity score matching was used to match the patients by gender, age, weight, height, BMI, and surgical approach in the two groups and 30 patients in each group were included in this study. Postoperative cup position was assessed using postoperative anterior-posterior pelvic radiograph by the Lewinnek's methods. The differences between target and postoperative cup position were investigated.Introduction
Methods
Scapular notching is a complication after reverse shoulder arthroplasty with a high incidence up to 100%. Its clinical relevance remains uncertain; however, some studies have reported that scapular notching is associated with an inferior clinical outcome. There have been no published articles that studied positional relationship between the scapular neck and polyethylene insert in vivo. The purpose of this study was to measure the distance between the scapular neck and polyethylene insert in shoulders with Grammont type reverse shoulder arthroplasty during active external rotation at the side. Eighteen shoulders with Grammont type prosthesis (Aequalis Reverse, Tornier) were enrolled in this study. There were 13 males and 5 female, and the mean age at surgery was 74 years (range, 63–91). All shoulders used a glenosphere with 36mm diameter, and retroversion of the humeral implant was 10°in 4 shoulders, 15°in 3 shoulders, and 20°in 11 shoulders. Fluoroscopic images were recorded during active external rotation at the side from maximum internal to external rotation at the mean of 14 months (range, 7–24) after surgery. The patients also underwent CT scans, and three-dimensional glenosphere models with screws and scapula neck models were created from CT images. CT-derived models of the glenosphere and computer-aided design humeral implant models were matched with the silhouette of the implants in the fluoroscopic images using model-image registration techniques (Figure 1). Based on the calculated kinematics of the implants, the closest distance between the scapular neck and polyethylene insert was computed using the scapular model and computer-aided design insert models (Figure 2). The distance was computed at each 5° increment of glenohumeral internal/external rotation, and the data from 20°internal rotation to 40°external rotation were used for analyses. One-way repeated-measures analysis of variance was used to examine the change of the distance during the activity, and the level of significance was set at P < 0.05.Background
Methods
Most of patients with unilateral hip disease shows muscle volume atrophy of pelvis and thigh in the affected side because of pain and disuse, resulting in reduced muscle weakness and limping. However, it is unclear how the muscle atrophy correlated with muscle strength in the patient with hip disorders. A previous study have demonstrated that the volume of the gluteus medius correlated with the muscle strength by volumetric measurement using 3 dimensional computed tomography (3D-CT) data, however, muscles influence each other during motions and there is no reports focusing on the relationship between some major muscles of pelvis and thigh including gluteus maximus, gluteus medius, iliopsoas and quadriceps and muscle strength in several hip and knee motions. Therefore, the purpose of the present study is to evaluate the relationship between muscle volumetric atrophy of major muscles of pelvis and thigh and muscle strength in flexion, extension and abduction of hip joints and extension of knee joint before surgery in patients with unilateral hip disease. The subjects were 38 patients with unilateral hip osteoarthritis, who underwent hip joint surgery. They all underwent preoperative computed tomography (CT) for preoperative planning. There were 6 males and 32 females with average age 59.5 years old. Before surgery, isometric muscle strength in hip flexion, hip extension, hip abduction and knee extension were measured using a hand held dynamometer (µTas F-1, ANIMA Japan). Major muscles including gluteus maximus, gluteus medius, iliopsoas and quadriceps were automatically extracted from the preoperative CT using convolutional neural networks (CNN) and were corrected manually by the experienced surgeon. The muscle volumetric atrophy ratio was defined as the ratio of muscle volume of the affected side to that of the unaffected side. The muscle weakness ratio was defined as the ratio of muscle strength of the affected side to that of the unaffected side. The correlation coefficient between the muscle atrophy ratio and the muscle weakness ratio of each muscle were calculated.Introduction
Material and Methods
For patients with Developmental Dysplasia of the Hip (DDH) who progress to needing total joint arthroplasty it is important to understand the morphology of the femur when planning for and undertaking the surgery, as the surgery is often technically more challenging in patients with DDH on both the femoral and acetabular parts of the procedure1. The largest number of male DDH patients with degenerative joint disease previously assessed in a morphological study was 122. In this computed tomography (CT) based morphological study we aimed to assess whether there were any differences in femoral morphology between male and female patients with developmental dysplasia undergoing total hip arthroplasty (THA) in a cohort of 49 male patients, matched to 49 female patients. This was a retrospective study of the pre-operative CT scans of all male patients with DDH who underwent THA at two hospitals in Japan between 2006–2017. Propensity score matching was used to match these patients with female patients in our database who had undergone THA during the same period, resulting in 49 male and 49 female patients being matched on age and Crowe classification. The femoral length, anteversion, neck-shaft angle, offset, canal-calcar ratio, canal flare index, lateral centre-edge angle, alpha angle and pelvic incidence were measured for each patient on their pre-operative CT scans.Objectives
Methods
The aim of this study was to examine whether hips with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH) have significant asymmetry in femoral length, and to determine potential related factors. We enrolled 90 patients (82 female, eight male) with DDH showing unilateral OA changes, and 43 healthy volunteers (26 female, 17 male) as controls. The mean age was 61.8 years (39 to 93) for the DDH groups, and 71.2 years (57 to 84) for the control group. Using a CT-based coordinate measurement system, we evaluated the following vertical distances: top of the greater trochanter to the knee centre (femoral length GT), most medial prominence of the lesser trochanter to the knee centre (femoral length LT), and top of the greater trochanter to the medial prominence of the lesser trochanter (intertrochanteric distance), along with assessments of femoral neck anteversion and neck shaft angle.Aims
Patients and Methods
The purposes of this study were to review retrospectively the 10-year outcome of cementless total hip arthroplasty (THA) using an active robot system in the femoral canal preparation for an anatomic short stem and navigation in the cup placement through a mini incision posterior approach. We reviewed all patients who underwent THA with this procedure in 53 hips between 2004 and 2007. There were no intraoperative fracture nor navigation- or robotic-related complications. All implant sizes were same as planned ones. All cases were followed up at least two years and all implants showed bone ingrowth stable according to the Engh's criteria. After then, six patients died of unrelated causes. Two patients (three hips) could not come to the 10-year follow-up examination. The remaining 44 hips were followed for 10 to 12 years (11 years on average). There is no dislocation. The average JOA hip score improved from 48 preoperatively to 96 at the final examination. On the postoperative x-ray measurements, the average cup radiographic inclination was 39° and the radiographic anteversion was 14°. There was no stem which showed more than 2° of varus or valgus alignment. There was no case who showed more than 5mm of limb length discrepancy. Postoperative CT images of 38 hips were obtained at 2 weeks. After matching the coordinates of the pelvis and femur with the preoperative planning, we got very small differences in alignment parameters between the measured values and the planed ones. The difference differences between the plan and measured values were −0.1° in cup inclination, −1.4° in cup anteversion, stem 0.5° in coronal alignment, 0.6° in stem sagittal alignment, and −1.6° in stem anteversion, respectively. We conclude that our robotic femoral preparation for a short anatomical stem and navigated cup placement thru a mini-posterior approach was safe and feasible without affecting the accuracy of the procedure. There were no long term adverse effect of the procedure.
The purpose of this experimental study was to elucidate the accuracy of neck-cut PSG setting, and femoral component implantation using neck-cut PSG in the THA through the anterolateral-approach relative to the preoperative planning goals, and to determine the usefulness of PSG compared with the procedure without PSG. A total of 32 hips from 16 fresh Caucasian cadaveric samples were used and classified into 4 groups: cementless anatomical stem implantation with wide-base-contact PSG (AWP: 8 hips, Fig.2); (2) cementless anatomical stem implantation with narrow-base-contact PSG (ANP: 8 hips, Fig.2); (3) cementless anatomical stem implantation without PSG (Control: 8 hips); and (4) cementless taper-wedge stem implantation with wide-base-contact PSG (TWP: 8 hips). The absolute error of PSG setting in the sagittal plane of the AWP group was significantly less than that of the ANP (p=0.003).THA with wide-base- contact PSG resulted in better alignment of the femoral component than THA without PSG or with narrow- base-contact PSG. Although the neck-cut PSG did not control the sagittal alignment of taper-wedge stem, the neck-cut PSG was effective to realise the preoperative coronal alignment and medial height for THA via the anterolateral approach regardless of the femoral component type. For figures and tables, please contact authors directly.
We have previously investigated an association between the genome copy number variation (CNV) and acetabular dysplasia (AD). Hip osteoarthritis is associated with a genetic polymorphism in the aspartic acid repeat in the N-terminal region of the asporin ( Acetabular coverage of all subjects was evaluated using radiological findings (Sharp angle, centre-edge (CE) angle, acetabular roof obliquity (ARO) angle, and minimum joint space width). Genomic DNA was extracted from peripheral blood leukocytes. Agilent’s region-targeted high-density oligonucleotide tiling microarray was used to analyse 64 female AD patients and 32 female control subjects. All statistical analyses were performed using EZR software (Fisher’s exact probability test, Pearson’s correlation test, and Student’s Objectives
Methods
The purposes of this study were to review retrospectively the 25-year survival of cemented and cementless THA for hip dysplasia and to compare the effect of fixation methods on the long-term survival in patients with DDH. We retrospectively reviewed all patients with OA secondary to hip dysplasia treated with a cemented Bioceram hip system between 1981 and 1987, and a cementless cancellous metal Lübeck hip system between 1987 and 1991. The studied subjects were 76 hips of cemented THA (Group-C) and 57 hips of cementless THA (Group-UC). Both hip implants had a 28-mm alumina head on polyethylene articulation. The mean age at operation was 50.5 years (range, 36–60 years) in Group-C and 50.0 years (range, 29–60 years) in Group-UC. The survival at 25 years regarding any revision as the endpoint was 46% in Group-C and 76% in Group-UC. These difference was significant using Log-rank test (P=0.008). The cup survival at 25 years was 47% in Group-C and 83% in Group-UC (P= 0.0003). The stem survivals at 25 years were 95% in Group-C and 92% in Group-UC. (P= 0.416). Cementless THA in patients with DDH showed a higher survival rate at 25 years than cemented THA because of the excellent survival of the acetabular component without cement. We conclude that cementless THA with the cancellous metal Lübeck hip system led to better longevity at 25 years than cemented THA with the Bioceram in patients with OA secondary to DDH.
Patients with hip osteoarthritis have a substantial loss of muscular strength in the affected limb compared to the healthy limb preoperatively, but there is very little quantitative information available on preoperative muscle atrophy and degeneration and their influence on postoperative quality of life (QOL) and the risk of falls. The purpose of the present study were two folds; to assess muscle atrophy and degeneration of pelvis and thigh of patients with unilateral hip osteoarthritis using computed tomography (CT) and to evaluate their impacts on postoperative QOL and the risk of falls. We used preoperative CT data of 20 patients who underwent primary total hip arthroplasty. The following 17 muscles were segmented with our developed semi-automated segmentation method: iliacus, gluteus maximus, gluteus medius, gluteus minimus, rectus femoris, tensor facia lata, adductors, pectinus, piriformis, obturator externus, obturator internus, semimenbranosus, semitendinosus, vastus medialis and vastus lateralis/intermedius (Fig. 1). Volume and radiological density of each muscle were measured. The ratio of those of affected limb to healthy limb was calculated. At the latest follow-up, the WOMAC score was collected and a history of falls after surgery was asked. The average follow- up period was 6 years. Comparison of the volume and radiological density of each muscle between affected and healthy limbs was performed using the Wilcoxon signed rank test. Correlations between the volume and radiological density of each muscle and each score of the WOMAC were evaluated with Spearman's correlation coefficient. The volume and radiological density of each muscle between patients with and without a history of falls were compared using Mann-Whitney U test.Introduction
Methods
Cup anteversion and inclination are important to avoid implant impingement and dislocation in total hip arthroplasty (THA). However, it is well known that functional cup anteversion and cup inclination also change as the pelvic sagittal inclination (PSI) changes, and many reports have been made to investigate the PSI in supine and standing positions. However, the maximum numbers of subjects studied are around 150 due to the requirement of considerable manual input in measuring the PSIs. Therefore, PSI in supine and standing positions were measured fully automatically with a computational method in a large cohort, and the factors which relate to the PSI change from supine to standing were analyzed in this study. A total of 422 patients who underwent THA from 2011 to 2015 were the subjects of this study. There were 83 patients with primary OA, 274 patients with DDH derived secondary OA (DDH-OA), 48 patients with osteonecrosis, and 17 patients with rapidly destructive coxopathy (RDC). The median age of the patient was 61 (range; 15–87). Preoperative PSI in supine and standing positions were measured and the number of cases in which PSI changed more than 10° posteriorly were calculated. PSI in supine was measured as the angle between the anterior pelvic plane (APP) and the horizontal line of the body on the sagittal plane of APP, and PSI in standing was measured as the angle between the APP and the line perpendicular to the horizontal surface on the sagittal plane of APP (Fig. 1). The value was set positive if the pelvis was tilted anteriorly and was set negative if the pelvis tilted posteriorly. Type of hip disease, sex, and age were analyzed with multiple logistic regression analysis if they were related to PSI change of more than 10°. For accuracy verification, PSI in supine and standing were measured manually with the previous manual method in 100 cases and were compared with the automated system used in this study.Background
Methods
Although many distal fit and fill design cementless stems have shown a very good long term stable fixation, short proximal coated stems are recently increasing in their use with an expectation of less stress shielding and an ease of removal at revision surgery. We introduced an anatomic short stem made from titanium alloy with proximal plasma-spray titanium and hydroxyapatite coating (CentPillar, Stryker, Mahwah) in 2002. To evaluate a minimum 10-year outcome of the system in terms of fixation and stress shielding, we reviewed initial 100 consecutive cases operated by a single surgeon. There were 91 hips with osteoarthritis and 9 hips with osteonecrosis. There were 94 females and 6 males. Average age at operation was 58 years. The patients were followed up for an average of 11 years. Average JOA hip score improved significantly from 46.9 preoperatively to 96.7 at the final examination. There were no dislocation, or revision, or radiographic loosening. When we looked at the level of bone atrophy, 80% of cases showed no stress shielding below the lessor trochanter. We conclude that the CentPillar stem showed mild stress shielding due to short proximal bone ongrowth coating while keeping a long term good clinical score and radiographic stability.