Osteoarthritis (OA) occurs due to a multi-scale degradation of articular cartilage (AC) surface which aggravates the disease condition. Investigating the micro-scale structural alterations and mechano-tribological properties facilitates comprehension of disease-mechanisms to improve future injectable-therapies. This study aims to analyze these properties using various experimental and analytical methods to establish correlations between their morpho-physiological features. In this study, Raman-spectroscopy was used to investigate microscale changes in AC constituents and categorize OA damage regions in knee-joint samples from joint replacement patients (Samples = 5 and Regions = 40). Following, microscale indentation and sliding tests were performed on these regions to evaluate variations in aggregate-modulus (AM) and elastic-modulus (EM), with coefficient of friction (COF). Finally, scanning electron microscopy (SEM) was employed to analyze these morphological variations.Introduction
Method
It is believed that wear of replacement joints A five active degree of freedom (DOF) spine simulator was used to compare the effects of varying the kinematic and loading input parameters on a ProDisc-L TDR (Synthes Spine). A four DOF standard ISO (ISO18192-1) test was followed by a five DOF test which included the AP shear force. The standard ISO test was repeated on a second simulator (of identical design) but with the phasing of the lateral bend (LB) and flexion extension (FE) motions changed to be in-phase, creating a low cross-shear motion pattern. The standard ISO test was then modified to give half the ISO standard axial loading. All tests conducted were based on the ISO18192-1 standard for lumbar implants with 15 g/l protein lubricant and modified as described. Gravimetric wear measurements were taken every million cycles (mc) in units of milligrams (mg). Six discs were tested to give statistically significant results.Introduction
Methods
The purpose of this study was to establish the a)feasibility, b) reproducibility of spinal Quantec scans (a non-intrusive surface topography system) and c) the validity of the Quantec Q-angle against Cobb angles from spinal radiographs, in non-ambulant children with cerebral palsy (CP). Eighteen non-ambulant children (aged 5–11 years) with CP had successful clinical, radiological and Quantec assessment of their spine while seated in a supportive seating system. Scoliosis incidence was 72%, Cobb angles ranged from 1–73° (mean 18.2°). Quantec scanning was feasible with appropriate postural support. Mean interobserver differences were 0.5 ± 5.8° (median 1.3°, 5 / 95th percentiles lying at −7.3 / 8.5° respectively). Mean differences between Cobb and Q-angle were 0.02 ± 6.2° (median 1.0°, with 5 / 95th percentiles lying at −8.2 / 7.7° respectively). Surface topography may be used to safely monitor the spine for non-ambulant CP children. Results show similar or improved trends to previous comparisons with idiopathic scoliosis. Ovadia (2007) showed an interobserver mean difference of 6.3 ± 4.9° using an Ortelius800TM system. Thometz (2000) showed mean differences between Cobb and Q-angle ranging from 1.1–12.6 ± 4.9–10.2°. Further research is needed for the user group described in this study with larger spinal curves.
We have investigated whether patients with adolescent-onset idiopathic scoliosis (AIS) are more likely to have a low body-weight. Measurements of weight, height and body mass index (BMI) were made in 44 young women with AIS and compared with age- and gender-adjusted normative data. The body mass criteria of the International Classification of Diseases for eating disorders was used to determine how many patients were within the range considered to be ‘eating disordered’. Compared with the normative data, the AIS group did not differ significantly in terms of height, (p = 0.646), but they were significantly lighter (p <
0.001) and had significantly lower BMI scores (p <
0.001); 25% of the series had BMI scores which were within the range considered to be anorexic. The relationship between a diagnosis of AIS and low body-weight may indicate disordered eating and is thus a cause for concern, particularly in the light of the well-established relationship between eating psychopathology and osteoporosis. Aspects of organic health may need to be considered in addition to the cosmetic deformity.
The direction of wear in the acetabular socket has implications for the amount of debris that is generated during movement, for the magnitude of eccentric loading and for the incidence of impingement of the neck. We observed the direction of penetration with respect to a global co-ordinate system in 84 acetabular components retrieved at reoperation. The mean direction of wear relative to the open face of the sockets was found to be 37° with a range from 0° to 87°. For those values determined using the inclination of the socket on the prerevision radiograph, the mean direction of penetration in the coronal plane had a lateral, rather than a medial, component. The mean angle was 84° (SD 17°) with respect to the horizontal. The angle of penetration was found to correlate significantly with the depth, in that the lateral component became larger as the wear progressed. There was also a significant correlation between the rate of penetration and the direction of wear. Despite the theoretical advantage of penetration in the superolateral direction, i.e., along the margin of the socket, in reducing the probability of impingement of the neck, no significant correlation was seen between the angle of penetration and the period of use in vivo. This may suggest that impingement of the femoral neck on the rim of the socket may not be the dominant factor in loosening of the socket but can still be important in a few cases.
We report a prospective study of the use of intramedullary bone blocks to improve the fixation of a matt-finish femoral stem in Charnley low-friction arthroplasties. There were 379 patients (441 hips), but at a minimum follow-up of ten years there were 258 arthroplasties in 221 patients including some which had been revised. The mean age at surgery was 41 years (17 to 51) and the mean follow-up was 13.4 years (1 to 20 including the early revisions). Nine stems (3.5%) had been revised for aseptic loosening, but there were no stem fractures. Survivorship of stems was 99.2% at ten years and 94.35% at 15 and 20 years. We found that the patient’s gender, the position of the stem and the experience of the surgeon all influenced the outcome. Our findings suggest that using our method of stem fixation, follow-up of over 11 years was needed to reveal the effects of endosteal cavitation of the femur, and of over 13 years to assess any divergence between the clinical and the radiological outcomes of stem fixation.