The management of hip fractures has advanced on all aspects from prevention, specialised hip fracture units, early operative intervention and rehabilitation in line with increasing incidence in an aging population. Accurate data analysis on the incidence and trends of hip fractures is imperative to guide future management planning. A review of all articles published on mortality after hip fracture over a twenty year period (1999–2018) was undertaken to determine any changes that had occurred in the demographics and mortality over this period. This article complements and expands upon the findings of a previous article by the authors assessing a four decade period (1959 – 1998) and attempts to present trends and geographical variations over sixty years.Abstract
Introduction
Methods
Intracanal rib head penetration is a well-known entity in dystrophic scoliotic curves in neurofibromatosis type 1. There is potential for spinal cord injury if this is not recognised and managed appropriately. No current CT-based classification system is currently in use to quantify rib head penetration. This study aims to propose and evaluate a novel CT-based classification for rib head penetration primarily for neurofibromatosis but which can also be utilised in other conditions of rib head penetration. The grading was developed as four grades: normal rib head (RH) position—Grade 0, subluxed ext-racanal RH position—Grade 1, RH at pedicle—Grade 2, intracanal RH—Grade 3. Grade 3 was further classified depending on the head position in the canal divided into thirds. Rib head penetration into proximal third (from ipsilateral side)—Grade 3A, into the middle third—Grade 3B and into the distal third—Grade 3C. Seventy-five axial CT images of Neurofibromatosis Type 1 patients in the paediatric age group were reviewed by a radiologist and a spinal surgeon independently to assess interobserver and intraobserver agreement of the novel CT classification. Agreement analysis was performed using the weighted Kappa statistic.Abstract
Purpose
Materials and methods
Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis allowing correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. A retrospective analysis of 20 patients (M:F=19:1 – 9–17 years) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7).Abstract
Aims
Methods
Flexible stabilisation has been utilised to maintain spinal mobility in patients with early-stage lumbar spinal stenosis (LSS). Previous literature has not yet established any non-fusion solution as a viable treatment option for patients with severe posterior degeneration of the lumbar spine. This feasibility study evaluates the mean five-year outcomes of patients treated with the TOPS (Total Posterior Spine System) facet replacement system in the surgical management of lumbar spinal stenosis and degenerative spondylolisthesis. Ten patients (2 males, 8 females, mean age 59.6) were enrolled into a non-randomised prospective clinical study. Patients were evaluated with standing AP, lateral, flexion and extension radiographs and MRI scans, back and leg pain visual analog scale (VAS) scores, Oswestry Disability Index (ODI), Zurich Claudication Questionnaire (ZCQ) and the SF-36 questionnaires, preoperatively, 6 months, one year, two years and latest follow-up at a mean of five years postoperatively (range 55–74 months). Flexion and extension standing lumbar spine radiographs were obtained at 2 years to assess range of motion (ROM) at the stabilised segment.Abstract
Objective
Methods
No clinical CT based classification system is currently in use for Lumbar Foraminal Stenosis. MRI scanners are not easily available, are expensive and may be contraindicated in an increasing number of patients. This study aims to propose and evaluate the reproducibility of a novel CT based classification for lumbar foraminal stenosis. The grading was developed as 4 grades. Normal foramen – Grade 0, Anteroposterior(AP)/Superoinferior (SI)(single plane) fat compression – Grade 1, Both AP/SI compression (two planes) – Grade 2 (both AP and SI) without distortion of nerve root, Grade 2 with distortion of nerve root – Grade 3. 800 lumbar foramen of a cohort of 100 random patients over the age of 60 who had undergone both CT and MRI scans were reviewed by two radiologists independently to assess agreement of the novel CT classification against the MRI based grading system of Lee et al. Interobserver(n=400) and intraobserver agreement(n=160) was also evaluated. Agreement analysis was performed using the Weighted Kappa statistic.Abstract
Purpose
Materials and Methods