Patellar resurfacing affects patellofemoral (PF) kinematics, contact mechanics, and loading on the patellar bone. Patients with total knee arthroplasty (TKA) often exhibit adaptations in movement patterns that may be linked to quadriceps deficiency and the mechanics of the reconstructed knee [1]. Previous comparisons of PF kinematics between dome and anatomic resurfacing have revealed differences in patellar sagittal plane flexion [2], but further investigation of PF joint mechanics is required to understand how these differences influence performance. The purpose of this study was to compare PF mechanics between medialized dome and medialized anatomic implants using subject-specific computational models. A high-speed stereo radiography (HSSR) system was used to capture 3D sub-mm measurement of bone and implant motion [3]. HSSR images were collected for 10 TKA patients with Attune® (DePuy Synthes, Warsaw, IN) posterior-stabilized, rotating-platform components, 5 with medialized dome and 5 with medialized anatomic patellar components (3M/7F, 62.5±6.6 years, 2.2±0.6 years post-surgery, BMI: 26.2±3.5 kg/m2), performing two activities of daily living: knee extension and lunge (Figure 1). Relative motions were tracked using Autoscoper (Brown University, Providence, RI) for implant geometries obtained from the manufacturer. A statistical shape model was used to predict the patella and track motions [4]. Subject-specific finite element models of the experiment were developed for all subjects and activities [5]. The model included implant components, patella, quadriceps, patellar tendon, and medial and lateral PF ligaments (Figure 2a). While tibiofemoral kinematics were prescribed based on experimental data, the PF joint was unconstrained. A constant 1000N quadriceps load was distributed among four muscle groups. Soft tissue attachments and pre-strain in PF ligaments were calibrated to match experimental kinematics [5]. Model outputs included PF kinematics, patellar and contact force ratios, patellar tendon angle, and moment arm.Introduction
Methods
Subjects having a posterior cruciate ligament sacrificing (PCLS) mobile bearing TKA seem to experience less translation during gait, but often achieve less weight-bearing flexion. More recently, posterior stabilisation has been added to PCLS mobile bearing TKA, hoping to increase flexion. Therefore, the objective of this multi-center study was to determine the in vivo kinematics for subjects implanted with a mobile bearing PS TKA that attempts to maintain high contact area. Subjects with 10 TKA from 2 surgeons were asked to perform maximum weight-bearing flexion (deep knee bend (DKB)) and gait while under fluoroscopic surveillance. During weight bearing flexion, the 3-D kinematics of the TKA were determined by analyzing fluoroscopic images in the sagittal plane at 30 degree increments. Fluoroscopic images taken in the frontal plane from four increments during the stance phase of gait were analyzed. The average weight-bearing flexion was 116 degrees and the average medial and lateral anteriorposterior (AP) translation was posterior with −1.9 mm and −5.4 mm, respectively, from full extension to maximum weight-bearing flexion. The average femorotibial axial rotation from full extension to maximum weight-bearing flexion was 3.9 degrees. During the stance phase of treadmill gait, patients experienced 0.8 mm (0.1 mm to 2.3 mm, SD=0.8 mm) of “pure” mediolateral translation of the femur relative to the tibia. The femorotibial axial rotation was 4.6 degrees from heel-strike to toe-off (Table 3). The posterior femoral rollback and axial rotation patterns were similar to the normal knee, albeit experiencing less overall motion. More noticeably, subjects in this study experienced a significantly greater weight-bearing flexion than previous subjects analyzed with a mobile bearing PCLS TKA and more reproducible “fan-like” patterns, where the lateral condyle rolled greater posteriorly than the medial condyle.
Indications for revision include aseptic loosening (31 knees), instability (30 knees), failed unicompartmental knee replacement (8 knees), infection reimplantation (7 knees), arthrofibrosis (3 knees), chronic hemarthrosis (3 knees), failed patellofemoral replacements (1 knees), and nonunion of a supracondylar femur fracture (1 knee).
The objective of this present study is to conduct a comparative analysis of the kinematic data derived for all subjects having a TKA who were analysed over the past eight years at our laboratory. Femorotibial contact positions for 705 subjects having either a fixed bearing PCR or PS TKA or mobile bearing TKA were analysed in three-dimensions using video fluoroscopy. During a deep knee bend, all PS TKA types subjects experienced a medial pivot motion, averaging −3.8 of lateral condyle posterior femoral rollback (PFR), respectively. Subjects having a fixed bearing PCR TKA experienced only −0.7 mm of lateral condyle PFR and an anterior slide of 1.6 mm for the medial condyle. Twenty-nine percent of the PCR TKA analysed had a lateral pivot and 71% experienced a medial pivot. Subjects having a mobile bearing TKA experienced −2.8 mm of lateral condyle PFR and 0.4 mm of medial condyle anterior slide. Fifty-one percent of the moble bearing implants experienced a medial pivot and 43% experienced a lateral pivot. During gait, PS and PCR fixed bearing TKA types experienced similar kinematic patterns. Subjects having a mobile bearing TKA experienced minimal motion, probably due to the mobile bearing TKA having greater sagittal conformity and had the lowest standard deviation. There was great variability in the data comparing various TKA designs. Subjects in this multicentre analysis predominantly experienced a medial pivot motion, although certain TKA designs did demonstrate a lateral pivot motion.