header advert
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 10 - 10
1 Feb 2017
Ali A Mannen E Smoger L Haas B Laz P Rullkoetter P Shelburne K
Full Access

Introduction

Patellar resurfacing affects patellofemoral (PF) kinematics, contact mechanics, and loading on the patellar bone. Patients with total knee arthroplasty (TKA) often exhibit adaptations in movement patterns that may be linked to quadriceps deficiency and the mechanics of the reconstructed knee [1]. Previous comparisons of PF kinematics between dome and anatomic resurfacing have revealed differences in patellar sagittal plane flexion [2], but further investigation of PF joint mechanics is required to understand how these differences influence performance. The purpose of this study was to compare PF mechanics between medialized dome and medialized anatomic implants using subject-specific computational models.

Methods

A high-speed stereo radiography (HSSR) system was used to capture 3D sub-mm measurement of bone and implant motion [3]. HSSR images were collected for 10 TKA patients with Attune® (DePuy Synthes, Warsaw, IN) posterior-stabilized, rotating-platform components, 5 with medialized dome and 5 with medialized anatomic patellar components (3M/7F, 62.5±6.6 years, 2.2±0.6 years post-surgery, BMI: 26.2±3.5 kg/m2), performing two activities of daily living: knee extension and lunge (Figure 1). Relative motions were tracked using Autoscoper (Brown University, Providence, RI) for implant geometries obtained from the manufacturer. A statistical shape model was used to predict the patella and track motions [4].

Subject-specific finite element models of the experiment were developed for all subjects and activities [5]. The model included implant components, patella, quadriceps, patellar tendon, and medial and lateral PF ligaments (Figure 2a). While tibiofemoral kinematics were prescribed based on experimental data, the PF joint was unconstrained. A constant 1000N quadriceps load was distributed among four muscle groups. Soft tissue attachments and pre-strain in PF ligaments were calibrated to match experimental kinematics [5]. Model outputs included PF kinematics, patellar and contact force ratios, patellar tendon angle, and moment arm.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 445 - 445
1 Nov 2011
Haas B Mueller J Dowd J Komistek R Anderle M Mahfouz M
Full Access

Subjects having a posterior cruciate ligament sacrificing (PCLS) mobile bearing TKA seem to experience less translation during gait, but often achieve less weight-bearing flexion. More recently, posterior stabilisation has been added to PCLS mobile bearing TKA, hoping to increase flexion. Therefore, the objective of this multi-center study was to determine the in vivo kinematics for subjects implanted with a mobile bearing PS TKA that attempts to maintain high contact area.

Subjects with 10 TKA from 2 surgeons were asked to perform maximum weight-bearing flexion (deep knee bend (DKB)) and gait while under fluoroscopic surveillance. During weight bearing flexion, the 3-D kinematics of the TKA were determined by analyzing fluoroscopic images in the sagittal plane at 30 degree increments. Fluoroscopic images taken in the frontal plane from four increments during the stance phase of gait were analyzed.

The average weight-bearing flexion was 116 degrees and the average medial and lateral anteriorposterior (AP) translation was posterior with −1.9 mm and −5.4 mm, respectively, from full extension to maximum weight-bearing flexion.

The average femorotibial axial rotation from full extension to maximum weight-bearing flexion was 3.9 degrees. During the stance phase of treadmill gait, patients experienced 0.8 mm (0.1 mm to 2.3 mm, SD=0.8 mm) of “pure” mediolateral translation of the femur relative to the tibia. The femorotibial axial rotation was 4.6 degrees from heel-strike to toe-off (Table 3).

The posterior femoral rollback and axial rotation patterns were similar to the normal knee, albeit experiencing less overall motion. More noticeably, subjects in this study experienced a significantly greater weight-bearing flexion than previous subjects analyzed with a mobile bearing PCLS TKA and more reproducible “fan-like” patterns, where the lateral condyle rolled greater posteriorly than the medial condyle.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 415 - 415
1 Nov 2011
Kim R Dennis D Yang C Haas B
Full Access

Introduction: Common failure modes of revision total knee arthroplasty (TKA) include aseptic component loosening and damage to constraining mechanisms which are often required in revision TKA. Mobile-bearing (MB) revision TKA components have been developed in hopes of lessening these failure mechanisms. Our objective was to evaluate the early clinical outcomes for the use of MB in revision TKA with a minimum 2-year follow-up and to evaluate bearing complications.

Methods: Retrospective clinical and radiographic evaluation of 84 MB revision TKAs with minimum 2-year follow-up was performed. Revision TKAs were performed using PFC Sigma and LCS revision rotating platform implants (Depuy, Warsaw, IN).

Indications for revision include aseptic loosening (31 knees), instability (30 knees), failed unicompartmental knee replacement (8 knees), infection reimplantation (7 knees), arthrofibrosis (3 knees), chronic hemarthrosis (3 knees), failed patellofemoral replacements (1 knees), and nonunion of a supracondylar femur fracture (1 knee).

Results: At a mean follow-up of 3.7 years, the average Knee Society clinical and function scores had increased from 50.3 points preoperatively to 89.1 points and from 49.3 points to 80.1 points, respectively. Average motion improved from 99.8° preoperatively to 116.5° postoperatively. Radiographic review demonstrated excellent fixation with no evidence of component loosening upon latest follow-up. No cases of bearing instability were observed.

Conclusion: This evaluation of 84 MB revision TKAs has demonstrated favorable early results at a mean follow-up of 3.7 years with no occurrence of bearing instability. Longer follow-up is required to evaluate for potential advantages of reducing polyethylene wear, lessening fixation stresses, and protection of constraining mechanisms.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 416 - 416
1 Apr 2004
Komistek R Kilgus D Northcut E Haas B Walker S
Full Access

Introduction: Previously, in vivo kinematic studies have determined that axial rotation patterns are quite variable between implant type and specific subjects. Previously, kinematic studies have determined that subjects having a mobile bearing TKA experience axial rotation, but it was unknown as to whether the bearing was rotating. Therefore, the objective of this present study was to analyze the in vivo kinematics for subjects having a mobile bearing prosthesis to determine if the polyethylene rotates relative to the femoral and/or the tibial components.

Methods: Femorotibial contact positions for ten subjects having a mobile bearing TKA, implanted by a single surgeon, were analyzed using video fluoroscopy. Each subject, while under fluoroscopic surveillance, performed a weight-bearing deep knee bend to maximum flexion. Video images were downloaded to a workstation computer and analyzed at varying degrees of knee flexion. Each polyethylene component had four metallic beads, inserted at known positions. Using a 3D model-fitting process, the femoral, tibial and polyethylene insert components were overlaid onto the fluoroscopic images. Initially, the polyethylene insert was made transparent, but the computer would overlay the four metal beads. Then, the polyethylene insert was made viewable and analyzed relative to the metal femoral and tibial components.

Results: All of the subjects experienced polyethylene bearing rotation relative to the metal tibial component and minimal rotation relative to the metal femoral component. On average, relative to the metal tibial component, the subjects experienced 4.7° (2.1 to 7.9°) of polyethylene bearing rotation. The subjects experienced a similar amount of metal femoral component rotation, relative to the metal tibial component. On average, the subjects experienced 4.0° (−0.7 to 10.0°) of rotation of the metal femoral component relative to the metal tibial component. Therefore, on average, subjects experienced only 0.7° of rotation for the metal femoral component relative to the polyethylene bearing. Also, on average, from full extension to 90° of knee flexion the subjects experienced −2.9 mm of posterior femoral rollback of their lateral condyle and –0.4 mm of their medial condyle.

Discussion: This is the firs study to determine the in vivo rotation of the polyethylene bearing for subjects having a mobile bearing TKA. The results from this study determined that the polyethylene bearing is rotating relative to the metal tibial component, but not relative to the metal femoral component. Therefore, as the metal femoral component axially rotates the polyethylene bearing is rotating a similar amount in the same direction. Since bearing rotation does occur under in vivo conditions, subjects implanted with a mobile bearing prosthesis may be subjected to lesser amounts of contact stresses, which may be beneficial to them.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 408 - 408
1 Apr 2004
Northcut E Kobori M Komistek R Haas B Walker S Macht D
Full Access

Introduction: The goal of this study was to determine the difference between weight-bearing and non weight-bearing range of motion (ROM) for Japanese subjects having either a fixed or mobile bearing TKA with either a resurfaced (RP) or unresurfaced (UP) patella.

Methods: Forty subjects were evaluated using video fluoroscopy. Twenty subjects had a fixed bearing posterior cruciate retaining (PCR) TKA (10 RP, 10 UP) and twenty subjects had a mobile bearing (MB) TKA (10 RP, 10 UP). Under weight-bearing conditions, each subject performed successive deep knee bends to maximum flexion. Then, under passive, non weight-bearing conditions the subjects stood on one leg and passively flexed their knee to maximum flexion. Each trial was recorded and analyzed digitally. The angle between the femoral and tibial longitudinal axes was subtracted from 180o to obtain the amount of flexion.A single surgeon control was used. The average age of the subjects was 66.4, 78.1, 70.3, and 71.1 for subjects having PCR RP, PCR UP, MB RP, and MB UP, respectively. All total knee subjects were judged excellent clinically with HSS scores > 90 points. None complained of pain during testing.

Results: The preoperative ROM for the implanted knee groups was 115, 122, 110, and 120 degrees for subjects having a PCR RP, PCR UP, MB RP, and MB UP, respectively. The average passive ROM was 106 (90–131) and 108 (72–128) degrees for subjects having a PCR RP and PCR UP, respectively. Subjects having a MB TKA experienced greater passive ROM, 120 degrees for both the MB RP (105–136o) and MB UP (105–167o). Under weight-bearing conditions, ROM decreased for all groups, with the average ROM of 101 (90–125), 108 (86–128), 109 (92–134), and 114 (94–142) degrees for subjects having a PCR RP, PCR UP, MB RP, and MB UP, respectively. The greatest amount of ROM occurred for a subject having a MB UP, 167o during passive ROM and 142o during a weight-bearing ROM.

Discussion: Subjects in this study having a MB TKA experienced greater ROM for all of the compared four parameters. Subjects having a MB RP experienced greater passive (120 vs. 106) and weight-bearing (109 vs. 101) ROM compared to the PCR RP group. Similarly, subjects having a MB UP experienced greater passive (120 vs. 108) and weight-bearing (114 vs. 108) ROM compared to the PCR UP group. Interestingly, subjects having an UP TKA experienced greater ROM compared to subjects having a RP TKA. The results from this study may suggest that a mobile bearing TKA may lead to greater ROM for the Japanese populations, where achieving deep flexion is essential for normal daily activities.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 408 - 408
1 Apr 2004
Northcut E Sugita T Sato K Haas B Komistek R
Full Access

Introduction: Recently, many different mobile bearing TKA designs are being implanted throughout the world. Also,fluoroscopy has been used to evaluate variousTKA under in vivo conditions to determine the kinematics. The objective of this study was to utilize a randomized prospective study to evaluate the kinematic patterns, for Japanese subjects implanted with two different mobile bearing TKA.

Methods: Twenty Japanese subjects were entered into a prospective study. Ten subjects were implanted with a mobile bearing TKA, which is free to rotate around the longitudinal axis of the tibia (MB1). The other ten subjects were implanted with a mobile bearing TKA that allows for unrestricted translation and rotation (MB2). Femorotibial contact positions were analyzed using video fluoroscopy. Each subject, while under fluoroscopic surveillance, was asked to perform gait. Video images were downloaded to a workstation computer and analyzed at varying degrees of gait stance. Femorotibial contact paths for the medial and lateral condyles were then determined using a computer automated model-fitting technique. Femorotibial contact anterior to the tibial midline in the sagittal plane was denoted as positive and contact posterior was denoted as negative.

Results: During gait, on average, subjects implanted with MB1 experienced minimal A/P translation of either condyle. Also, all subjects having MB1 experienced similar motion patterns throughout the stance phase of gait. Axial rotation was evident in these subjects, as one condyle would move in the anterior direction, a similar amount to the other condyle moving posterior. On average, subjects implanted with MB2 experienced both translation and rotation. The amount of translation for subjects with MB2 was greater than subjects with MB1. The kinematic patterns for subjects having MB2 were also more variable than subjects having MB1. Axial rotation was also evident for subjects having MB1.

Discussion: This study has shown that the kinematic patterns for subjects having two different mobile bearing TKA designs differed considerably. Subjects implanted with a mobile bearing TKA that only allows for free rotation, experienced minimal A/P motion and significant axial rotation (MB1). Subjects implanted with a mobile bearing TKA that allows for free translation and rotation did experience both types of motions (MB2). There was minimal variability in the kinematic patterns for subjects implanted with MB1, while subjects implanted with MB2 experienced more variable kinematic patterns.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 407 - 407
1 Apr 2004
Komistek R Dennis D Mahfouz M Hoff W Haas B Anderson D
Full Access

Introduction: Understanding the in vivo motions of human joints has become increasingly important. Researchers have used in vitro (cadavers), non-invasive (gait labs), and in vivo (RSA, fluoroscopy) approaches to assess human knee motion. The objective of this study was to use fluoroscopy and computer tomography (CT) to accurately determine the 3D, in vivo, weight-bearing kinematics of normal knees.

Methods: Five normal knees clinically assessed as having no pain or ligamentous laxity were analyzed. Using CT scanning, slices were obtained six inches proximal to the joint line on the femur and six inches of the proximal tibia. Three-dimensional CAD models of each subject’s femur, tibia and patella were recreated from the 3D bone density data. Each subject was then asked to perform five weight-bearing activities while under fluoroscopic surveillance: (1) deep knee bend, (2) normal gait, (3) chair rise, (4) chair sit, and (5) stair descent. The computer-generated 3D models of each subject’s femur and tibiaon (> 1


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 6 - 6
1 Jan 2004
Komistek R Dennis D Anderson D Haas B
Full Access

The objective of this present study is to conduct a comparative analysis of the kinematic data derived for all subjects having a TKA who were analysed over the past eight years at our laboratory.

Femorotibial contact positions for 705 subjects having either a fixed bearing PCR or PS TKA or mobile bearing TKA were analysed in three-dimensions using video fluoroscopy.

During a deep knee bend, all PS TKA types subjects experienced a medial pivot motion, averaging −3.8 of lateral condyle posterior femoral rollback (PFR), respectively. Subjects having a fixed bearing PCR TKA experienced only −0.7 mm of lateral condyle PFR and an anterior slide of 1.6 mm for the medial condyle. Twenty-nine percent of the PCR TKA analysed had a lateral pivot and 71% experienced a medial pivot. Subjects having a mobile bearing TKA experienced −2.8 mm of lateral condyle PFR and 0.4 mm of medial condyle anterior slide. Fifty-one percent of the moble bearing implants experienced a medial pivot and 43% experienced a lateral pivot. During gait, PS and PCR fixed bearing TKA types experienced similar kinematic patterns. Subjects having a mobile bearing TKA experienced minimal motion, probably due to the mobile bearing TKA having greater sagittal conformity and had the lowest standard deviation.

There was great variability in the data comparing various TKA designs. Subjects in this multicentre analysis predominantly experienced a medial pivot motion, although certain TKA designs did demonstrate a lateral pivot motion.