Tightrope fixation is known method for reconstructing acromioclavicular joint and the presence of good bone stock around the two drillholes is the most important determining factor for preventing failure. Arthroscopic-assisted tightrope stabilisation involve drilling clavicle and coracoids in a straight line. This leads to eccentric drillholes with inadequate bone around it. Open tightrope fixation involves drilling holes under direct vision, independently and leading to centric hole with adequate bone around it. Our study assesses the hypothesis of tightrope fixation in relation to location of drillholes using CT-scan and cadaveric models for arthroscopic and open technique for ACJ fixation. CT-scans of 20 shoulders performed. Special software used to draw straight line from distal end of clavicle to coracoid. Bone volume around coracoid drillhole was calculated. Cadaveric shoulder specimens were dissected. The arthroscopic technique was performed under vision by drilling both clavicle and base of coracoid holes in one direction. Same specimens were used for open technique. Base of coracoid crossectioned and volume calculated.Aim
Methods
Polymethylmethacrylate(PMMA) bone cement has been used in joint reconstruction surgery and recently introduced for treatment of osteoporotic vertebral compression fracture. However, the use of PMMA bone cement in vertebroplasty leads to extensive bone stiffening and high rate of adjacent vertebrae fracture. The purpose of this study was to investigate the properties of PMMA bone cement augmented with collagen and assess its characteristics and relevance for the reduction of complication rate associated with vertebroplasty.Introduction
Aim