Total hip arthroplasty (THA) instability is well documented to be more common in specific demographic groups. We report a retrospective analysis of the use of a dual mobility implant for primary hip replacements in selected patients at risk for dislocation. The aim of this study was to assess the long-term clinical and radiologic features associated with the dual mobility cup in case of primary THA. At our institution 119 primary THA were performed in 114 patients (74 females and 40 males) at high risk of instability between January 2000 and December 2002. 84% of the patients had at least two risk factors for dislocation. The mean age was 71 years old (range, 21.4 to 93.2 years) at the time of the arthroplasty. A dual mobility cup was used in all cases. Clinical result was assessed using Harris Hip Score, and complications were determined by detailed review of the patient's records. Radiographs of the involved joint were reviewed to assess the position of the prosthesis and to look for osteolysis and signs of loosening of the implant.Introduction
Materials and Methods
The value of collared stems for uncemented implants remains controversial. Some comparative studies have demonstrated advantages of collared stems regarding the potential for subsidence. Other studies with longer follow-up have shown no adverse effect of the use of a collar regarding the femoral component survivorship. To date, the adequate size of the collar with regards to the anatomy of the proximal femur has never been studied. The goal of this study was to assess whether the size of the collar needs to be adjusted according to the size of the femoral component used, and according to the use of a standard or a lateralized component. 102 CT of normal femurs have been divided into 2 groups of 51 femurs each. Each group has been analysed by 2 independant surgeons. Each CT view passed through the axis of the proximal diaphysis and the center of the femoral head. The scale was 100%. Templates of femoral components have been set in order to reproduce the center of rotation and an optimal filling of the proximal femoral canal. Sizes of the femoral components as well as the need for standard or lateralized implants have been recorded. In order to determine the ideal size of the collar, the distance between the medial edge of the prothesis and the medial edge of the femur (so-called P-C distance) at the level of the neck cut (calcar) has been measured.Introduction
Materials and Method
Primary mechanical fixation and secondary biologic fixation determine the fixation of an uncemented femoral component. An optimized adequacy between the implant design and the proximal femur morphology allows to secure primary fixation. The femoral antetorsion has to be considered in order to reproduce the center of rotation. A so-called «corrected coronal plane » including the center of the femoral head has therefore been defined. The goal of this study was to evaluate the proximal metaphysal volume and to design a straight femoral component adapted to this corrected coronal plane. 205 CT-scans (performed in 151 males and 54 females free of hip arthritis) have been analyzed with a three-dimensional reconstruction. The mean age was 68.5 years (35–93). A corrected coronal plane has been defined including the center of the femoral head and the axis of the intramedullary canal. Five levels of sections (at a defined distance from the center of the femoral head) have been selected: 12.5mm, 50mm, 70mm, 90mm and 120mm. Three intramedullary criteria have been studied: volume between the 50mm and the 90mm sections (C1), the medial-lateral distance of the intramedullary canal (C2) at the 50mm, 70mm, and 90mm levels, and the A-P distance (C3) at the 50mm, 70mm, and 90mm levels (respectively C3–50, C3–70, and C3–90). The femoral head diameter, the femoral offset and the canal flare index (CT flare) have also been measured.Introduction
Materials and Methods
Revision procedures for unstable total hip arthroplasty have been reported with high failure rates. Many options have been proposed in such challenging cases, including dual mobility. The purpose of this retrospective study was to assess the clinical and radiologic features associated with the dual mobility cup in case of revisions for instability. Sixty four total hip arthroplasties (62 patients) were revised for THA instability using a dual mobility cup at our institution between March 2000 and April 2008. Mean age at reoperation was 67.3 year old (range, 35 to 98). The outcome of the revision procedure was assessed using the Harris Hip Score, and complications were determined by detailed review of the patient's records. Anteroposterior and lateral radiographs of the involved joint were reviewed to assess the position of the prosthesis and to look for osteolysis and signs of loosening of the implant.Introduction
Materials and Methods
Recurrent instability after total hip arthroplasty remains a serious and somewhat frequent problem. Constrained implants have proven effective to manage instability. This has led to a liberal utilization of these devices. However, sporadic mechanical failures have been reported. This report analyzes the failures of a single constrained device at our institution. Forty-three constrained implants (Stryker Constrained Liner™) in 34 patients were revised out of total 390 similar implants performed at our institution. There were 24 females and 10 males. Constrained implant was inserted at the first revision in 6 hips and after an average of three surgeries (1-6) in 37 hips. Seven different methods of constrained liner fixation were observed. Eight different theoretical failure mechanisms were identified: six are mechanical device failures at each of the implant interfaces, infection and catastrophic polyethylene wear being the other two.Introduction
Materials and Methods
Despite improvements in prosthesis design, the clinical outcome of total hip arthroplasty still has 10% failure rate after 10 years. Component malpositioning can lead to instability, impingement, excessive wear and loosening. Computer-assisted procedures are expected to improve the accuracy of component positioning, and therefore the long-term outcome. We present an original hip navigation system that allows controlling leg lengthening, offset and stability without the use of the pelvic anterior plane. Because the reliability of the pelvic anterior plane (Lewinnek plane) remains discussed, we present a computer-assisted hip replacement using a functional femoral reference plane. Direction and depth of the acetabular reaming and progression of the femoral rasp are calculated by a sophisticated algorithm, as well as the components' final position, in order to control leg lengthening and offset. In addition, the ROM to impingement (and therefore the stability) is continuously displayed relative to the position of the components. Simple graphical and numerical data in addition to virtual instruments displayed on the screen aid the surgeon during the entire procedure.Introduction
Material and Methods
Reoperations to manage unstable total hip arthroplasty are reported with a high failure rate. The dual mobility cup (figure 1) (mobile polyethylene component between the prosthetic head and the outer metal shell) is a useful option in such cases. The purpose of this retrospective study was to assess the clinical and radiologic features associated with the dual mobility cup. Fifty one unstable total hip arthroplasties (32 females, 19 males) were revised using a dual mobility socket at our institution between March 2000 and February 2005. Mean age at reoperation was 67 year old (range, 35 to 98). The outcome of the revision procedure was assessed using the Harris Hip Score, and complications were determined by detailed review of the patient's records. Anteroposterior and lateral radiographs of the involved joint were reviewed to assess the position of the prosthesis and to look for osteolysis and signs of loosening of the implant.Introduction
Materials and Methods
Reoperations for total hip arthroplasty instability are reported with high failure rates. The “dual mobility” socket is an attractive option in such cases. The goal of this retrospective study was to assess the clinical and radiographic features associated with such a design. Fifty four unstable total hip arthroplasties (35 females, 19 males) were revised using a “dual mobility” socket at our institution between March 2000 and June 2005. Mean age at reoperation was 66.5 year old (range, 35.7 to 98.7). Harris Hip Score was used to assess the revision procedures’ outcome, and complications were determined by detailed review of the patient’s records. Anteroposterior and lateral radiographs of the involved joint were reviewed to assess the position of the prosthesis and to look for osteolysis and signs of loosening of the implant. Mean follow-up was 4 years (range, 26 to 81 months). At last review 4 patients had died and one was lost to follow up. Postoperatively there was a significant improvement of the Harris Hip Score. Among the surviving patients, one (2%) redislocated and was successfully managed with closed reduction. This patient remained stable at latest follow-up. There were 3 revisions for deep infection, and 2 for dissociation of the bipolar component. Technical errors were found to be conducive to these dissociations. No cup required a revision for aseptic loosening. No radiolucent lines around the components and no osteolysis were observed at latest follow up. The “dual mobility” socket is a highly effective option to manage unstable total hip arthroplasty. Unlike constrained devices, such components did not raise any concern regarding the potential for loosening and for osteolysis. Longer follow up is needed to confirm these results.