Since the COVID-19 pandemic of 2020, there has been a marked rise in the use of telemedicine to evaluate patients following total knee arthroplasty (TKA). Telemedicine is helpful to maintain patient contact, but it cannot provide objective functional TKA data. External monitoring devices can be used, but in the past have had mixed results due to patient compliance and data continuity, particularly for monitoring over numerous years. This novel stem is a translational product with an embedded sensor that can remotely monitor patient activity following TKA The Canturio™ TE∗ System (Canary Medical) functions structurally as a tibial extension for the Persona® cemented tibial plate (Zimmer Biomet). The stem is instrumented with internal motion sensors (3-D accelerometer and gyroscope) and telemetry that collects and transmits kinematic data. Raw data is converted by analytics into clinically relevant gait metrics using a proprietary algorithm. The Canturio™ TE∗ will monitor the patient's gait daily for the first year and then with lower frequency thereafter to conserve battery power enabling the potential for 20 years of longitudinal data collection and analysis. A base station in the OR activates the device and links the stem and data to the patient. A base station in the patient's home collects and uploads data to the Cloud Based Canary Data Management Platform (Canary Medical). The Canary Cloud is structured as an FDA regulated and HIPPA-compliant database with cybersecurity protocols integrated into the architecture. A third base station is an accessory used in the health care professional's office to perform an on-demand gait analysis of a patient. A dashboard allows the health care professional and patient to monitor objective data of the patient's activity and progress post treatment.PROBLEM
SOLUTION
For preoperative planning of Total Hip Arthroplasty (THA) it is paramount to choose the correct implant size to avoid subsidence with too small a component or fracture with too large a component. This planning can be done either in 2D or 3D. 2D templating from X-rays frontal images remains the gold standard technique in THA preoperative planning despite the lower accuracy with uncemented components. 3D planning techniques require a CT-Scan examination overexposing patients to radiation. Biplanar EOS® radiographs are an alternative to obtain bone 3D reconstructions with a very low dose of radiation. The objective of this study was to evaluate the accuracy and reproducibility a novel 3D technique for THA preoperative planning based on biplanar low-dose radiographs. 31 patients (20 women, 11 men, average age 66.1 y/o) who underwent a primary THA (Hardinge anterolateral approach) were included. Two senior orthopedic surgeons (Op_1 and Op_2) performed the pre-operative planning: (1) In 2D superimposing templates of the cup and the stem on CR radiographs. The CR images had a magnification coefficient of 1.15. (2) In 3D using dedicated hipEOS (EOS Imaging, France) software. 2D planning was performed once by each operator, 3D planning twice. 3D planning with hipEOS [Figure 1] was performed by importing 3D models of the stem and cup and superimposing them on frontal-lateral EOS® radiographs. This software proposes an initial estimate of the components size and position. If necessary, the user can correct the size of the stem and perform translations and rotations of the 3D models in order to correct the position, while clinical parameters such as the cup anteversion and inclination, as well as the femoral offset and leg length are automatically recalculated. To evaluate the accuracy, we have compared the 2D and 3D planning with respect to the actual size implanted during the surgery. To evaluate reproducibility we have calculated the Intra-class Correlation Coefficient (ICC) of both techniques.Introduction
Materials and methods