header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 86 - 86
1 Nov 2018
Gottardi R
Full Access

Cartilage-bone interactions play a critical role in joint diseases and the osteochondral junction has been identified as a locus of osteoarthritis development. However, it is challenging to study osteochondral (OC) interaction in vitro, since cartilage and bone require very different environments. We developed a new medium-to-high throughput osteochondral microphysiological system bioreactor to culture biphasic native or engineered constructs and that can be used to study any musculoskeletal tissue interfaces. We developed engineered constructs from hMSCs on a porous polymeric matrix with a gradient in pore size to assess the supportive effect of the local topology on cartilaginous and osseous differentiation. Furthermore, we developed a triphasic, vascualized osteochondral constructs based on porous polycaprolactone and methacrylated gelatin scaffolds to study the specific effects of vasculature on cartilage and bone. We also cultured native OC tissues from postmenopausal women, exposing either cartilage or bone to sex hormones studying their protective effects. Finally, our bioreactor is being implemented for use on the International Space Station to study countermeasures against microgravity bone loss. Overall, our bioreactor maintains media separation for in vitro culture and engineering of OC tissues and constructs of progressively greater complexity, and it preserves the possibility of direct cartilage-bone crosstalk opening new opportunities to study interactions across the osteochondral junction.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 55 - 55
1 Nov 2018
Moeller K Gottardi R Tellado SF Tuan R van Griensven M Balmayor ER
Full Access

After surgical tendon repair, the tendon-to-bone enthesis often doesn't regenerate, which leads to high numbers of rupture recurrences. To remedy this, tissue engineering techniques are being pursued to strengthen the interface and improve regeneration. In this study, we used biphasic 3D printed PLGA scaffolds with aligned pores at the tendon side and random pores at the bone side to mimic the native enthesis. We seeded these with mesenchymal stem cells and inserted them into dual-flow bioreactors, allowing us to employ tenogenic and chondrogenic differentiation medium in separate flows. MTS assay demonstrated metabolism in dual-flow bioreactors at levels similar to tissue culture plate and rotating bioreactors. After 7, 14 and 21 days, samples were collected and analyzed by histology, RT-PCR and GAG production. H&E staining confirmed a compact cell layer attached to fibers and between porous cavities of scaffolds that increased with time of culture. Interestingly, cultured constructs in dual-flow bioreactors biased towards a chondrogenic fate regardless of which flow they were exposed to, possibly due to high porosity of the scaffold allowing for fluid mixture. Sox9 was upregulated at all timepoints (up to 30× compared to control), and by day 21 Col2A1 was also highly upregulated. Additionally, GAG production in treated constructs (serum-free) was able to match constructs exposed to 10% FBS in controls, demonstrating the functional matrix forming capabilities of this system. Overall, we have validated this dual-flow system as a potential platform to form the enthesis, and future studies will further optimize parameters to achieve distinctly biphasic constructs.