Surgical drill-bits are used in a raft of procedures, from trauma, joint reconstruction to Arthroplasty. Drilling of bone is associated with the conversion of mechanical work energy into shear failure of bone and heat generation, causing a transient rise in temperature of hard and soft tissues. Thermal insults above 47°C sustained for one minute or more may cause osteonecrosis, reduced osteogenic potential, compromise fixation and influence tolerances with cutting blocks. Drill design parameters and operational variables have marked effects on cutting performance and heat generation during drilling. Dulling and wear of the cutting surfaces sustained through repeated usage can significantly reduce drill bit performance. Deterioration of cutting performance substantially increases the axial thrust force required to propel the cutting face through bone, compromising surgeon control during drilling and increasing the likelihood of uncontrolled plunging, cortical breakthrough and improper placement of holes as well as other jigs. The drilling accuracy and skiving of 2.8 mm 3-fluted SurgiBit (Orthopedic Innovation (OI), Sydney, Australia) (Figure 1) was compared with a standard 2-fluted drill (Synthes) at 15, 30 and 45 degrees using a 4th generation Sawbone as well as bovine cortical bone. A surgical handpiece was mounted in a servo-hydraulic testing machine and the motion of the drill-bit confined to 2 degrees of freedom. The lateral force and skiving distance was measured (n=6 per drill per angle per testing medium). A new drill was used for each test. Wear performance over multiple drilling episodes (1, 10 and 100) was performed in bovine cortical bone. The surface characteristics of the cutting faces of the drills were assessed optically at 10x magnification and at higher magnifications (50, 100 and 500x) using an environmental electron microscope.Introduction
Methods
The aim of this study was to determine the torsional and 4-point bending properties of a midshaft humeral osteotomy reconstructed with either an intramedullary nail or locking plate.
A transverse midshaft osteotomy was created and a spacer ensured a constant 3-mm gap between the bone ends. Reconstruction was performed with either
Trigen humeral nail (Smith &
Nephew, TN) – 10 specimens Humeral locking plate (Synthes, PA) – 9 specimens Non-destructive 4-point bending was repeated, and then each humerus was embedded in a low-melting point alloy proximally and distally for torsional testing. Torque was applied at 5 deg/min until failure. Maximum torque, maximum angle and stiffness were calculated. All data were analysed with SPSS for Windows (SPSS Inc., Il) using ANOVA.
4-point bending: the bones reconstructed with the intramedullary nail were ~50% as stiff as the intact state in both planes. There was no statistically significant difference in stiffness between the intact bones and those reconstructed with the locking plate. Torsional testing: the locking plate specimens were 3 times as stiff as the intramedullary nail specimens (P<
0.05) and failed at twice the torque (P<
0.05).
Seven specimens were used for mechanical analysis. A humeral osteotomy was performed distal to the insertion of pectoralis major, leaving intact the biceps sheath and the muscle belly of long head of biceps. The proximal humerus was attached to a custom-designed jig and the muscle belly of biceps grasped in cryogenic grips. Specimens were loaded on an MTS 858 Bionix mechanical testing machine (MTS Systems, MN) in uniaxial tension at a rate of 1 mm/sec until failure was observed.
Histological examination of the biceps sheath revealed membranous tissue consisting of loose soft tissue with fat and blood vessels. Synovial tissue was also identified. The sheath was seen to loosely attach to the biceps tendon, with a more intimate attachment to the periosteum. The mean force to pull the long head of biceps tendon out of the sheath 102.7 N (range 17.4 N–227.6 N)