header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 17 - 17
1 Feb 2013
Monsell F Bellemore M Bilston L Goodship A Barnes J
Full Access

We investigated the effect of adjuvant and neoadjuvant chemotherapy regimens on the tibial regenerate after removal of the external fixator in a rabbit model of distraction osteogenesis using New Zealand white rabbits.

Forty rabbits were randomly distributed into two groups. In the neoadjuvant group, half of the rabbits received 1mg/kg cisplatinum & 2mg/kg adriamycin at eight weeks of age followed by 1mg/kg cisplatinum & 4mg/kg adriamycin at ten weeks of age. The remaining ten received an identical volume of normal saline using the same regimen. The adjuvant group differed only in the timing of the chemotherapy infusion. Half received the initial infusion ten days prior to the osteotomy, with the second infusion four days following the osteotomy. Again, the remaining ten rabbits received an identical volume of normal saline using the same regimen. This produced an identical interval between infusions and identical age at osteotomy in both groups. All rabbits underwent a tibial osteotomy at 12 weeks of age. Distraction started 24hours after osteotomy at a rate of 0.75mm a day for 10 days, followed by 18 days without correction to allow for consolidation of the regenerate.

At week 16 there was no difference in Bone Mineral Density (BMD), Bone Mineral Content (BMC) or volumetric Bone Mineral Density (vBMD) in the adjuvant group. Neoadjuvant chemotherapy appears to have a significant detrimental effect on BMD, vBMD and BMC. Despite this there were no significant alterations in the mechanical properties of the regenerate. Histologically there was a trend for increased cortical thickness in the control groups compared to intervention however this did not prove statistically significant.

In conclusion, adjuvant chemotherapy may be more beneficial for cases where distraction osteogenesis is being considered to replace segmental bone loss after tumour excision.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 83 - 83
1 Feb 2012
Hart A Hester T Goodship A Powell J Pele L Fersht N Skinner J
Full Access

It is thought that metal ions from metal on metal bearing hip replacements cause DNA damage and immune dysfunction in the form of T cell mediated hypersensitivity. To explore the hypothesis that there is a relationship between metal ion levels and DNA damage and immune dysfunction in matched patient groups of hip resurfacings and standard hip replacements reflected in the levels of lymphocyte subtypes (CD3+ T cells, CD4+ T helper cells, CD8 +T cytotoxic/suppressor cells, CD16 +Natural Killer and CD19+ B cells) in peripheral blood samples, we analysed peripheral blood samples from 68 patients: 34 in the hip resurfacing group and 34 in the standard hip arthroplasty group. Samples were analysed for counts of each sub-group of lymphocyte and cytokine production. Whole blood cobalt and chromium ion levels were measured using inductively-coupled mass spectrometry. All hip components were well fixed.

Cobalt and chromium levels were significantly elevated in the resurfacing group compared to the hybrid group (p<0.001). There was a statistically significant decrease in the resurfacing group's level of CD8+ cells (T cytotoxic/suppressor) (p=0.010). No other subgroup of lymphocytes was significantly affected. Gamma interferon levels post antigen challenge were severely depressed in the hip resurfacing group.

A threshold level of blood cobalt and chromium ions for depression of CD8+ T cells was observed. Hip resurfacing patients have levels above this threshold whilst standard hip replacements fall below it. The patients all had normal levels of CD16 +Natural Killer and CD19+ B cells suggesting that this is not a bone marrow toxic effect. Cytokine analysis confirmed that some aspects of T cell function in hip resurfacing patients are severely depressed.