The human wrist is a highly complex joint, offering extensive motion across various planes. This study investigates scapholunate ligament (SLL) injuries’ impact on wrist stability and arthritis risks using cadaveric experiments and the finite element (FE) method. It aims to validate experimental findings with FE analysis results. The study utilized eight wrist specimens on a custom rig to investigate Scapho-Lunate dissociation. Contact pressure and flexion were measured using sensors. A CT-based 3D geometry reconstruction approach was used to create the geometries needed for the FE analysis. The study used the Friedman test with pairwise comparisons to assess if differences between testing conditions were statistically significant.Introduction
Method
Monomeric C reactive protein (mCRP) presents important proinflammatory effects in endothelial cells, leukocytes, or chondrocytes. However, CRP in its pentameric form exhibits weak anti-inflammatory activity. It is used as a biomarker to follow severity and progression in infectious or inflammatory diseases, such as intervertebral disc degeneration (IVDD). This work assesses for the first time the mCRP effects in human intervertebral disc cells, trying to verify the pathophysiological relevance and mechanism of action of mCRP in the etiology and progression of IVD degeneration. We demonstrated that mCRP induces the expression of multiple proinflammatory and catabolic factors, like nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and lipocalin 2 (LCN2), in human annulus fibrosus (AF) and nucleus pulposus (NP) cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signaling of mCRP. Our results indicate that the effect of mCRP is persistent and sustained, regardless of the proinflammatory environment, as it was similar in healthy and degenerative human primary AF cells. This is the first article that demonstrates the localization of mCRP in intravertebral disc cells of the AF and NP and that provides evidence for the functional activity of mCRP in healthy and degenerative human AF and NP disc cells.
A FEA model built from CT-data of frozen cadaver has been validated and used for under-reaming experiments. 1 mm under-reaming can provide contact surface and micromotions that are acceptable and within the clinical relevance without high impact force. Long-term cup fixation and stability in total hip arthroplasty (THA) is directly related to the bone ingrowths between the porous cup and the acetabulum. To achieve the initial cup setting, 1 mm of under reaming is becoming the gold standard for cementless cup and what is at stake is usually the actual contact between cup and acetabulum wall. During impact and cup placement, friction forces are generated from the “not permanent” deformations of the acetabular wall that are translated into a gap between the reamed bone and the cup. Clinically the surgeon objective is to have the gap extended to a limited portion of the cup in order to improve bone ingrowth. Hence, the need arises from examining this cup bone stability interface by examining the selected “under reaming” conditions, the surface of contact between the acetabular cup and the bone and its relation to the impact force resulting from the hammering of the cup.Summary Statement
Introduction