Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however, polyethylene (PE) wear and osteolysis may affect survivorship. Accurate wear measurements correlated with clinical data may offer unique research information of clinical interest about this highly debated issue. We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) system after twenty years analysing polyethylene wear and the appearance of osteolysis.Introduction
Objetive
Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis.Objectives
Methods
Definitive proof is lacking on mesenchymal stem cell (MSCs) cellular therapy to regenerate bone if biological potential is insufficient. High number of MSCs after GMP expansion may solve the progenitor insufficiency at the injury but clinical trials are pending. A prospective, multicenter, multinational Phase I/IIa interventional clinical trial was designed under the EU-FP7 REBORNE Project to evaluate safety and early efficacy of autologous expanded MSCs loaded on biomaterial at the fracture site in diaphyseal and/or metaphysodiaphyseal fractures (femur, tibia, humerus) nonunions. The trial included 30 recruited patients among 5 European centres in France, Spain, Germany, and Italy. Safety endpoints (local and general complication rate) and secondary endpoints for early efficacy (number of patients with clinically and radiologically proven bone healing at 12 and 24 weeks) were established. Cultured MSCs from autologous bone marrow, expanded under GMP protocol was the Investigational Medicinal Product, standardised in the participating countries confirming equivalent cell production in all the contributing GMP facilities. Cells were mixed with CE-marked biphasic calcium phosphate biomaterial in the surgical setting, at an implanted dose of 20−106 cells per cc of biomaterial (total 10cc per case) in a single administration, after debridement of the nonunion.Background
Methods
Despite good survivorship analysis for most uncemented tapered straight stems, new proposals modifying stem design in total hip replacement (THR) are being introduced in order to facilitate femoral revision surgery. We have evaluated the clinical and radiological results of four different designs of uncemented tapered straight stems implanted in our institution in order to assess: operative complications, clinical results, survivorship analysis for aseptic loosening and radiographic findings 1008 hips implanted from 1998 to 2006 were prospectively followed for a mean of 12 years (range, 10 to 17). Four uncemented femoral designs employing a tapered straight stem were included: 209 Alloclassic stems, 420 Cerafit, 220 SL-Plus and 159 Summit. All hips had a 28 or 32 mm femoral head, and polyethylene (PE)-on metal or ceramic-on-ceramic bearing surface. Radiological femoral type, stem position, femoral canal filling at three levels and the possible appearance of loosening and other bone remodelling changes were recorded in all hips.Background and aim
Methods
Description of an original in vitro protocol for assessing combined bacteria and cell competitive adherence on the surface of biomaterials of medical interest Biomaterial-related infections are a major clinical problem. The pathogenesis of this syndrome has been described as a competitive adherence between bacteria and human cells in the so-called “race for the surface” theory. The aim of this study is to develop an Summary Statement
Objectives
Biomaterial-related infections are an important complication in orthopaedic surgery [1], and A 18mm diameter rod of Ti–6Al–4V alloy ELI grade according to the standard ASTMF136-02 supplied by SURGIVAL was cut into 2 mm thick disk specimens, ground through successive grades of SiC paper to 1200 grade, degreased with a conventional detergent and rinsed in tap water followed by deionised water. The specimens were then chemically polished (CP). The disks were anodized only on one side by using a two electrode cell in a suitable electrolyte. TiO2 barrier layers, without fluoride (BL), were produced by anodizing in 1 M H2SO4 at 15 mA cm-2 to 90 V, reaching 200 nm of thickness. Fluoride barrier layers (FBL) were produced in an electrolyte containing 1 M NH4H2PO4 and 0.15 M NH4F, at constant voltage controlled at 20 V for 120 min at 20°C; the thickness of the layer is 140 nm. Laboratory biofilm-forming strains of INTRODUCTION
MATERIAL AND METHODS
Biofilm development is a major factor in the pathogenesis of implant-related infections. However, there are only a low number of studies that analyses the ability of clinical isolates of bacteria to develop biofilm in vitro. Here we study biofilm development in several strains of Staphylococcus aureus and Coagulase-negative Staphylococcus (CNS) consecutively isolated from retrieved orthopaedic implants from patients diagnosed of implant-related infections. We have evaluated in vitro biofilm development using the crystal violet technique in microtiter plates. Biofilm development was confirmed by visual microscopy and Confocal Laser Scanning Microscopy. Staphylococcal strains were isolated from implant-related infections by sonication of retrieved prosthesis as previously published by our group, and identified using conventional methods. Twenty-seven strains (15 S. aureus, nine S. epidermidis, and one each of S. hominis, S. lugdunensis and S. warneri) were included in the study. Four strains of S. aureus (26.7 %) and one strain of S. epidermidis (8.3 %) did not develop biofilm in the test, showing OD lectures almost identical to the negative control. No statistical differences were detected between the two groups. The microscopic examination confirms this finding. Among the biofilm-producing strains, an important difference of the amount of biofilm produced was detected. One strain (S. aureus) produced biofilm in greater amount than all other strains, detectable even by visual examination of the plate. In conclusion, not all staphylococcal strains isolated from implant-related infections are able to develop biofilm in vitro. There must be other pathogenic factors that are important in the pathogenesis of implant-related infections and need to be studied in order to develop a better strategy for treat these infections.