header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 28 - 28
1 May 2016
Shenoy V Gifford H Kao J
Full Access

Introduction

The pathogenesis of primary knee osteoarthritis is due to excess mechanical loading of the articular cartilage. Previous studies have assessed the impact of muscle forces on tibiofemoral kinematics and force distribution. A cadaveric study was performed to evaluate the effect of altering the moment arm of the iliotibial band (ITB) on knee biomechanics.

Method

A robotic system consisting of a 6-DOF manipulator capable of measuring forces on the medial and lateral condyle of a cadaveric knee at various flexion angles and muscle forces was utilized [1]. The system measured the compartment forces at flexion angles between 0° and 30° under 3 simulated loading conditions (300N quadriceps, 100N hamstrings and: i. 0N ITB; ii. 50N ITB; iii. 100N ITB).

Eight fresh frozen human cadaver knee specimens (4 males, 4 females); age range 36 – 50 years; weight range 49 – 90 kg; height range 154 – 190 cm were used in the study.

The ITB and associated lateral soft tissue structures were laterally displaced from the lateral femoral condyle by fixing a metal implant (like in Figure 1) to the distal lateral femur. Mechanical loads on the medial and lateral compartments (with and without the implant) were measured using piezoelectric pressure sensors.