Back pain is a significant socio-economic problem affecting around 80% of the population at some point during their lives. Chronic back pain leads to millions of days of work absence per year, posing a burden to health services around the world. In order to assess surgical interventions, such as disc replacements and spinal instrumentations, to treat chronic back pain it is important to understand the biomechanics of the spine and the intervertebral disc (IVD). A wide range of testing protocols, machines and parameters are employed to characterise the IVD, making it difficult to compare data across laboratories. The aim of this study was to compare the two most commonly used testing protocols in the literature: the stiffness and the flexibility protocols, and determine if they produce the same data when testing porcine specimens in six degrees of freedom under the same testing conditions. In theory, the stiffness and the flexibility protocols should produce equivalent data, however, no detailed comparison study is available in the literature for the IVD, which is a very complex composite structure. Tests were performed using the unique six axis simulator at the University of Bath on twelve porcine lumbar functional spinal unit (FSU) specimens at 0.1 Hz under 400 N preload. The specimens were divided in two groups of six and each group was tested using one of the two testing protocols. To ensure the same conditions were used, tests were firstly carried out using the stiffness protocol, and the equivalent loading amplitudes were then applied using the flexibility protocol. The results from the two protocols were analysed to produce load-displacement graphs and stiffness matrices. The load-displacement graphs of the translational axes show that the stiffness protocol produces less spread between specimens than the flexibility protocol. However, for the rotational axes there is a large variability between specimens in both protocols. Additionally, a comparison was made between the six main diagonal terms of the stiffness matrices using the Mann-Whitney test, since the data was not normally distributed. No statistically significant difference was found between the stiffness terms produced by each protocol. However, overall the stiffness protocol generally produced larger stiffnesses and less variation between specimens. This study has shown that when testing porcine FSU specimens at 0.1 Hz and 400 N preload, there is no statistically significant difference between the main diagonal stiffness terms produced by the stiffness and the flexibility protocols. This is an important result, because it means that at this specific testing condition, using the same testing parameters and environment, both the stiffness and flexibility methods can be used to characterise the behaviour of the spine, and the results can be compared across the two protocols. Future work should investigate if the same findings occur at other testing conditions.
Chronic back pain is the leading cause of disability worldwide, affecting millions of people. The source of pain is usually the intervertebral disc (IVD), thus there has been a growing interest in developing new improved implants such as disc replacements to treat the condition. However, to ensure the artificial devices being designed replicate the intact disc, the biomechanical behaviour of the IVD must be well understood (Adams and Dolan, 2005). The two most widely used testing procedures in the spinal industry to characterise the behaviour of the disc are the flexibility and the stiffness protocols (Stokes et al, 2002 and Panjabi et al, 1976). For elastic specimens, the results produced by the flexibility and the stiffness protocols should in theory be identical. However, this does not hold true for inelastic specimens, such as the IVD. For this reason, the custom developed Spine Simulator (Holsgrove et al, 2014) at the University of Bath has been used to compare, in six degrees of freedom, the extent of the difference produced by these two testing protocols. A biomechanical model of the IVD was tested, which consisted of two cylindrical nylon blocks attached together with a layer of nitrile rubber, representing respectively the vertebral bodies (VB) and the IVD. Two steel pins were inserted into the VB, spanning the thickness of the disc, to ensure the stiffness raise either side of the neutral zone was replicated by the model. Tests were performed at a frequency of 0.1 Hz using triangular wave cycles. The specimen was firstly subjected to the stiffness protocol, characterised by displacements of ±0.5 mm in anterior-posterior and lateral shear, ±0.35 mm in axial compression and ±1.5 deg in all rotational axes. The resulting loads were applied to the specimen when subjected to the flexibility protocol. In addition, the effect of a preload was studied by testing specimens with an axial compressive load of 250 N. The stiffness matrix was calculated for each test and the main diagonal terms produced for the two protocols were compared using the Mann-Whitney test. Overall, results showed that there was a significant difference in the stiffness terms produced by the two protocols when tests were performed with (p ≤ 0.016) and without (p = 0.004) a preload. The only exception was found in the flexion-extension axis when the test was performed with a preload (p = 0.337). Additionally, differences were also recorded when comparing the shape and linearity of the load-displacement hysteresis curve (Figure 1) and the area enclosed by the curve. This preliminary study has provided important information regarding the differences in the data produced by the flexibility and the stiffness protocols, it is therefore impractical to compare results produced using these two methods. To ensure that in the future results can be compared across laboratories, there is a need for a standardised testing procedure in the spinal industry.
There has been an unprecedented increase in total knee replacement in recent years. The UK national joint registry recorded over 80,000 total knee replacements per year with a generally successful outcome. Improvements in modern knee replacement designs and surgical techniques has resulted in more and more young and active patients having knee replacements. Their more active lifestyles and increased life expectancy is also leading to a rise in revision knee surgery. The most common reason for revision knee replacement is for loosening as a result of wear and/or bone resorption. Revision knee tibial components typically use long stems to increase the stability in the presence of the proximal bone loss associated with implant removal and loosening. The stem design has been cited as a possible cause of the clinically reported pain at the stem end region. The aim of this study was to experimentally validate a finite element (FE) model and the analysis different load conditions and stem orientations in a stemmed tibial component. CT-scans of a composite tibia (Sawbones) were utilized to form a multi-body solid consisting of cortical bone and cancellous bone with an intramedullary canal. A fully cemented tibial component (Stryker) was virtually implanted in the composite tibia with the stem-end centred in the cancellous bone. The tibial compartment loads were distributed with a 60:40 (Medial: Lateral) and 80:20 ratio to simulate a normal and varus type knee. Several stem-end positions were developed with the modification of the tibias proximal resection angle. An experimental study using strain gauges applied to the same composite tibia was used to compare the results with the FE-model. The model was validated with the strain gauged experimental test specimens demonstrating a similar pattern and magnitude of predicted strains. The simulation of different stem-end orientations revealed an increase in strain to the posterior cortex below the stem-end with the stem in direct contact to the posterior cortical bone. A tibial stem fully surrounded by cancellous bone demonstrated a small increase to the proximal strains. The simulation of a varus aligned knee with a 80:20 (Medial: Lateral) load distribution shifted strain overall to the medial side and revealed a large increase of strain to the posterior-medial in the proximity of the stem-end. The intensification of the load on one side of the tibial plateau, associated with a varus aligned knee, developed the largest increase in strain beneath the stem-end region and is possibly a factor in the reported pain after surgery. The stem in close proximity to the posterior cortical bone is also a possible contributing factor to pain due to the increase of strain in the vicinity of the stem-end.
Traditional applied loading of the knee joint in experimental testing of RTKR components is usually confined to replicating the tibiofemoral joint alone. The second joint in the knee, the patellofemoral joint, can experience forces of up to 9.7 times body weight during normal daily living activities (Schindler and Scott 2011). It follows that with such high forces being transferred, particularly in high flexion situations such as stair climbing, it may be important to also represent the patellofemoral joint in all knee component testing. This research aimed to assess the inclusion of the patellofemoral joint during in vitro testing of RTKR components by comparing tibial strain distribution in two experimental rigs. The first rig included the traditional tibiofemoral joint loading design. The second rig incorporated a combination of both joints to more accurately replicate physiological loading. Five implanted tibia specimens were tested on both rigs following the application of strain gauge rosettes to provide cortical strain data through the bone as an indication of the load transfer pattern. This investigation aimed to highlight the importance of the applied loading technique for pre-clinical testing and research of knee replacement components to guide future design and improve patient outcomes. Five composite tibias (4th Generation Sawbones) were prepared with strain gauge rosettes (HBM), correctly aligned and potted using guides for repeatability across specimens. The tibias were then implanted with Stryker Triathlon components according to surgical protocol. The first experimental rig was developed to replicate traditional knee loading conditions through the tibiofemoral joint in isolation. The second experimental rig produced an innovative method of replicating a combination of the tibiofemoral and patellofemoral joint loading scenarios. Both rigs were used to assess the load distribution through the tibia using the same tibia specimens and test parameters for comparison integrity (Figure 1). The cortical strains were recorded under an equivalent 500 N cyclical load applied at 10° of flexion by a hydraulic test machine.Introduction
Methods