Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 104 - 104
2 Jan 2024
der Broeck L Geurts J Qiu S Poeze M Blokhuis T
Full Access

The optimal treatment strategy for post-traumatic long bone non-unions is subject of an ongoing discussion. At the Maastricht University Medical Center (MUMC+) the induced membrane technique is used to treat post-traumatic long bone non-unions. This technique uses a multimodal treatment algorithm involving bone marrow aspirate concentrate (BMAC), the reamer-irrigator-aspirator (RIA) and P-15 bioactive peptide (iFactor, Cerapedics). Bioactive glass (S53P4 BAG, Bonalive) is added when infection is suspected. This study aims to objectify the effect of this treatment algorithm on the health-related quality of life (HRQoL) of patients with post-traumatic long bone non-unions. We hypothesized that HRQoL would improve after treatment.

From January 2020 to March 2023, consecutive patients who were referred to a multidisciplinary (trauma, orthopaedic and plastic surgery) non-union clinic at the MUMC+, The Netherlands, were evaluated using the Non-Union Scoring System (NUSS). The EQ-5D-5L questionnaire and the Lower Extremity Functional Scale (LEFS) were employed to obtain HRQoL outcomes both prior to and subsequent to surgery, with a follow-up at 6, 18 and 35 weeks.

Seventy-six patients were assessed at baseline (T0), with a mean NUSS of 40 (± 13 SD). Thirty-eight patients had their first follow-up, six weeks after surgery (T1). Thirty-one patients had a second follow-up at 18 weeks (T2), and twenty patients had the third follow-up at 35 weeks (T3). The EQ-5D index mean at baseline was 0.480, followed by an index of 0.618 at T1, 0.636 at T2, and 0.702 at T3. A significant difference was found in the HRQoL score between T0 and T1, as well as T2 and T3 (p<0.001; p=0.011). The mean LEFS significantly increased from 26 before intervention to 34, 39, and 43 after treatment (p<0.001; p=0.033; p=0.016).

This study demonstrated a significant improvement in the health-related quality of life of patients with post-traumatic long bone non-unions after the standardized treatment algorithm following the induced membrane technique.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 30 - 30
24 Nov 2023
van Hoogstraten S Samijo S Geurts J Arts C
Full Access

Aim

Prosthetic joint infections pose a major clinical challenge. Developing novel material surface technologies for orthopedic implants that prevent bacterial adhesion and biofilm formation is essential. Antimicrobial coatings applicable to articulating implant surfaces are limited, due to the articulation mechanics inducing wear, coating degradation, and toxic particle release. Noble metals are known for their antimicrobial activity and high mechanical strength and could be a viable coating alternative for orthopaedic implants [1]. In this study, the potential of thin platinum-based metal alloy coatings was developed, characterized, and tested on cytotoxicity and antibacterial properties.

Method

Three platinum-based metal alloy coatings were sputter-coated on medical-grade polished titanium discs. The coatings were characterized using optical topography and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Ion release was measured using inductively coupled plasma optical emission spectrometry (ICP-OES). Cytotoxicity was tested according to ISO10993-5 using mouse fibroblasts (cell lines L929 and 3T3). Antibacterial surface activity, bacterial adhesion, bacterial proliferation, and biofilm formation were tested with gram-positive Staphylococcus aureus ATCC 25923 and gram-negative Escherichia coli ATCC 25922. Colony forming unit (CFU) counts, live-dead fluorescence staining, and SEM-EDS images were used to assess antibacterial activity.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 66 - 66
1 Oct 2022
Hulsen D Arts C Geurts J Loeffen D Mitea C
Full Access

Aim

Magnetic resonance imaging (MRI) and 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) Positron Emission Tomography, paired with Computed Tomography (PET/CT) are two indicated advanced imaging modalities in the complicated diagnostic work-up of osteomyelitis. PET/MRI is a relatively novel hybrid modality with suggested applications in musculoskeletal infection imaging. The goal of this study was to assess the value of hybrid 18F-FDG PET/MRI for chronic osteomyelitis diagnosis and surgical planning.

Method

Five suspected chronic osteomyelitis patients underwent a prospective 18F-FDG single-injection/dual-imaging protocol with hybrid PET/CT and hybrid PET/MR. Diagnosis and relevant clinical features for the surgeon planning treatment were compared. Subsequently, 36 patients with 18F-FDG PET/MRI scans for suspected osteomyelitis were analysed retrospectively. Sensitivity, specificity, and accuracy were determined with the clinical assessment as the ground truth. Standardized uptake values (SUV) were measured and analysed by means of receiver operating characteristics (ROC).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 21 - 21
1 Mar 2021
Seidel M Busso N Hügle T Geurts J
Full Access

Recent clinical studies on targeting nerve growth factor (NGF) in chronic low back pain and knee osteoarthritis have demonstrated efficient pain reduction in a short-term treatment regimen. However, the increased risk for the development of rapid progressive osteoarthritis at the required high drug dose remains a serious concern and prompts thorough analysis of the tissue distribution and role of NGF in degenerative musculoskeletal disorders. Here, we sought to investigate tissue distribution of NGF, its high affinity receptor TrkA and CD68-positive macrophages in human facet joint osteoarthritis of the lumbar spine.

Facet joint specimens (n=10) were harvested by facetectomy from patients undergoing elective lumbar intervertebral spine fusion. Facet joint osteoarthritis and presence of synovitis was graded using preoperative magnetic resonance imaging. Tissue distribution of NGF, TrkA and CD68 was determined using immunohistochemistry. Tissue degradation was graded on safranin-O-stained tissue sections. Association between imaging parameters and tissue distribution was determined using Pearson correlation analysis.

Synovitis was present in 6 cases and facet joints displayed moderate to severe radiological osteoarthritis (median Weishaupt grade; 2 [1.5–3]). NGF was expressed in 8 of 10 specimens. NGF was expressed in connective tissue, articular and fibrocartilage, but not bone tissue. Cartilaginous NGF expression was predominantly found in the extracellular matrix of superficial cartilage tissue with complete loss of proteoglycans, chondrocyte death and structural damage (fissures). Loss of cartilage proteoglycan staining alone did not display NGF immunoreactivitiy. NGF expression was not correlated with radiological osteoarthritis severity or presence of synovitis. NGF high affinity receptor TrkA was exclusively expressed in bone marrow tissues. Differential grades of bone marrow infiltration by CD68-positive macrophages were observed, yet these were not associated with NGF expression.

Targeting NGF in chronic low back pain and/or facet joint osteoarthritis might affect pathomechanisms in cartilaginous tissues and NGF signalling in the bone marrow compartment.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 16 - 16
1 Mar 2021
Geurts J Nasi S Walker U Hägle T
Full Access

Mitochondrial dysfunction has been demonstrated in aging and osteoarthritic tissues. We investigated knee joints of prematurely aging mitochondrial DNA mutator mice (PolgD275A) to evaluate a relationship between mitochondrial dysfunction and osteoarthritis.

Cartilage damage was evaluated using OARSI histopathology grading and osteoclast numbers were quantified by tartrate-resistant acid phosphatase staining in wild type, heterozygous and homozygous PolgD275A mice. Subchondral cortical plate and epiphyseal trabecular bone structures were determined by micro-computed tomography. Apoptosis in cartilage and subchondral bone tissues was studied using an indirect TUNEL method.

Homozygous mutants displayed osteopenia of the epiphyseal trabecular bone and subchondral cortical plate in comparison to wild type and heterozygous mutants. Subchondral osteopenia was associated with a strong increase of osteoclast numbers (0.88±0.30/mm bone perimeter) compared to heterozygous (0.25±0.03/mm) and wild type mice (0.12±0.04/mm). Wild type mice as well as hetero- and homozygous mutants displayed low-grade cartilage degeneration due to loss of cartilage proteoglycans. In contrast, chondrocyte hypertrophy was more abundant in the homozygous mice. There were no differences in chondrocyte apoptosis rates between groups.

Prematurely ageing mtDNA mutator mice with or without further mechanic or metabolic stimuli might serve as a valuable model for further experimental studies on aging-induced osteoporotic OA phenotype.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 86 - 86
1 Apr 2018
Geurts J Burckhardt D Netzer C Schären S
Full Access

Introduction

Histology remains the gold standard in morphometric and pathological analyses of osteochondral tissues in human and experimental bone and joint disease. However, histological tissue processing is laborious, destructive and only provides a two-dimensional image in a single anatomical plane. Micro computed tomography (μCT) enables non-destructive three-dimensional visualization and morphometry of mineralized tissues and, with the aid of contrast agents, soft tissues. In this study, we evaluated phosphotungstic acid-enhanced (PTA) μCT to visualize joint pathology in spine osteoarthritis.

Methods

Lumbar facet joint specimens were acquired from six patients (5 female, age range 31–78) undergoing decompression surgery. Fresh osteochondral specimens were immediately fixed in formalin and scanned in a benchtop μCT scanner (65 kV, 153 mA, 25 μm resolution). Subsequently, samples were completely decalcified in 5% formic acid, equilibrated in 70% ethanol and stained up to ten days in 1% PTA (w/v) in 70% ethanol. PTA-stained specimens were scanned at 70 kV, 140 mA, 15 μm resolution. Depth-dependent analysis of X-ray attenuation in cartilage tissues was performed using ImageJ. Bone structural parameters of undecalcified and PTA-stained specimens were determined using CT Analyser and methods were compared using correlation and Bland-Altman analysis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 23 - 23
1 Apr 2018
Geurts J Müller M Pagenstert G Netzer C Schären S
Full Access

Introduction

Elevated remodelling of subchondral bone and marrow tissues has been firmly established as diagnostic and prognostic radiological imaging marker for human osteoarthritis. While these tissues are considered as promising targets for disease-modifying OA drugs, the development of novel treatment approaches is complicated by the lack of knowledge whether similar tissue changes occur in rodent OA models and poor understanding of joint-specific molecular and cellular pathomechanisms in human OA. Here, we describe the establishment of a human OA explant model to address this crucial niche in translational preclinical OA research.

Methods

Osteochondral (knee, spine) and bone (iliac crest) clinical specimens were acquired from patients undergoing total knee arthroplasty (n=4) or lumbar spine fusion using bone autografts (n=6). Fresh specimens were immediately cut in equal-sized samples (50–500 mg wet weight) and cultured in 8 mL osteogenic medium for one week. Samples were either left untreated (control) or stimulated with lipopolysaccharide (LPS, 100 ng/mL) in the absence and presence of transforming growth factor-beta inhibitor (SB-505124, 10 μm). Pro-collagen-I (Col-I), interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1) secretion was determined in conditioned medium by ELISA. Tissue viability was assessed using MTT and alkaline phosphatase (ALP) activity staining.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 30 - 30
1 Apr 2018
Netzer C Distel P Wolfram U Schären S Geurts J
Full Access

Introduction

Facet joint osteoarthritis (FJOA) is a prominent clinical hallmark of degenerative spine disorders. During disease progression, cartilage and subchondral bone tissues undergo increased turnover and remodeling. The structural changes to the subchondral tissue of FJOA have not been studied thus far. In this study, we performed a micro computed tomography (µCT) study of the subchondral cortical plate (SCP) and trabecular bone (STB) in FJOA and determined osteoarthritis-specific alterations.

Methods

Twenty-four patients (11 male, 13 female, median age 65) scheduled for decompression and stabilization surgery for degenerative spinal stenosis were included in this study. FJOA specimens were harvested during surgery and analyzed by µCT. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp) and trabecular number (Tb.N) were evaluated using CT Analyser. Lumbar facet joints without chondropathy from cadaveric specimens (9 male, 6 female, median age 57) served as healthy controls. Age-, gender- and disease-specific effects were identified by ANOVA (p<0.05) and significant differences confirmed by Bonferroni's post-test. Association between age and structural parameters was determined using correlation analysis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 6 - 6
1 Apr 2018
Geurts J Ramp D Schären S Netzer C
Full Access

Introduction

Augmentation of spinal fusion using bone grafts is largely mediated by the osteoinductive potential of mesenchymal stem cells (MSC) that reside in cancellous bone. Iliac crest (IC) is a common autograft, but its use presents an increased risk for donor-site pain, morbidity and infection. Degenerative facet joints (FJ) harvested during facetectomy might servce as alternative local grafts. In this study, we conducted an intra-individual comparison of the osteogenic potential of MSC from both sources.

Methods

IC and degenerative FJ were harvested from 8 consecutive patients undergoing transforaminal lumbar interbody fusion surgery for spinal stenosis. MSC were isolated by collagenase digestion, selected by plastic adherence and minimally expanded for downstream assays. Clonogenic and osteogenic potential was evaluated by colony formation assays in control and osteogenic culture medium. Osteogenic properties, including alkaline phosphatase (ALP) induction, matrix mineralization and type I collagen mRNA and protein expression were characterized using quantitative histochemical staining and reverse transcription PCR. Spontaneous adipogenesis was analysed by adipocyte enumeration and gene expression analysis of adipogenic markers.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 73 - 73
1 May 2017
van Gestel N Arts J Hulsen D Geurts J Ito K van Rietbergen B
Full Access

Background

Bio-Active Glass (BAG) is a promising bone graft substitute for large bone defect reconstruction because of its favourable osteoconductive, antibacterial and angiogenic properties. Potentially, it could also mechanically reinforce the defect, thus making it suitable for load-bearing defects. However, the mechanical properties of the reconstructive layer consisting of BAG/bone allograft mixtures are unknown. The goals of this study therefore were, first, to measure the mechanical properties of different BAG/bone graft mixtures and, second, to investigate to what extent such mixtures could reinforce distal tibial defects using micro-FE analysis and high-resolution CT scans.

Materials and Methods

Four different BAG/bone graft mixtures were impacted in a cylindrical holder, mechanically tested in confined compression and scanned with micro-CT. From these images, bone graft material and glass were segmented using two different threshold values. The interface between bone and BAG was modelled separately by dilating the glass phase. Micro-Finite-Element (FE) models of the composites were made using a Young's modulus of 2.5 GPa for bone and 35 GPa for BAG. The Young's modulus for the interface region was determined by fitting experimental and micro-FE results for the same specimens. (82 μm resolution) CT scans of a 9 mm region of the distal tibia of 3 subjects were used. Micro-FE models of this region were made to determine its stiffness in the original state, with a simulated cortical defect and after a mixture of BAG/bone was modelled in the defect.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 74 - 74
1 May 2017
ten Broeke R Rudolfina R Geurts J Arts J
Full Access

Background

Implant stability and is an important factor for adequate bone remodelling and both are crucial in the long-term clinical survival of total hip arthroplasty (THA). Assessment of early bone remodelling on X-rays during the first 2 years post-operatively is mandatory when stepwise introduction of a new implant is performed. Regardless of fixation type (cemented or cementless), early acetabular component migration is usually the weakest link in THA, eventually leading to loosening. Over the past years, a shift towards uncemented cup designs has occurred. Besides the established hydroxyapatite (HA) coated uncemented cups which provide ongrowth of bone, new uncemented implant designs stimulating ingrowth of bone have increased in popularity. These cups initiate ingrowth of bone into the implant by their open metallic structure with peripheral pores, to obtain a mechanical interlock with the surrounding bone, thereby stabilising the prosthesis in an early stage after implantation. This retrospective study assessed bone remodelling, osseointegration and occurrence of radiolucency around a new ingrowth philosophy acetabular implant.

Methods

In a retrospectively, single centre cohort study all patients whom underwent primary THA with a Tritanium acetabular component in 2011 were included. Bone remodelling, osseointegration and occurrence of radiolucency were determined by two reviewers from X-ray images that were made at 6 weeks, 3–6-12 and 24 months post-operatively. Bone contact % was calculated based on the original Charnley and DeLee zones. According to Charnley and DeLee the outer surface of an acetabular cup is divided into 3 zones (1-2-3). For our analysis the original 3 zones were further divided into 2 producing 6 zones 1A to 3B. Each of these 6 zones were then further divided into 4 equal sections. We attributed 25 points per section in which complete bone contact without lucency was observed. If lucency was observed no points were attributed to the section. A fully osteointegrated cup in all 24 sections could therefore attain 600 points. The total of each section and zone was subsequently tallied and recalculated to produce the percentage of bone contact on a 1–100% score.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 99 - 99
1 Jan 2017
van Vugt T Arts J Geurts J
Full Access

Chronic osteomyelitis is historically treated in a two stage fashion with antibiotic-loaded polymethylmethacrylate (PMMA) as local antibacterial therapy. However, two-stage surgeries are associated with high morbidity, long hospitalization and high treatment costs. In recent years new biomaterials were developed that allow to change this treatment algorithm. S53P4 bioactive glass is such a novel biodegradable antibacterial bone graft substitute that enables a one-stage surgery in local treatment of chronic osteomyelitis. This study aimed to explore the eradication of infection and bone healing capacities of S53P4 bioactive glass in clinical practice.

In this prospective longitudinal outcome study, clinical applicability of S53P4 bioactive glass in treatment of patients with chronic osteomyelitis was assessed. All patients with clinically, haematologically and radiologically evident chronic osteomyelitis were included. All patients were treated with an extensive debridement surgery, S53P4 bioactive glass implantation and systemic antibiotic administration. Primary endpoint of this study is eradication of infection. During follow-up eradication was analysed based on clinical outcomes, blood samples (inflammatory parameters) and radiological outcomes. The secondary endpoint, bone healing, is assessed using conventional radiographic images of the treated region.

Between 2011 and 2016, 25 patients were included in this study, with a mean follow-up of 23 months (range 4 – 57). Hospital stay was short with a mean of 18 days (range 4 – 40) and patients required an average of 1,4 surgeries (range 1 – 4). The inflammatory parameter C-reactive protein (CRP) showed a normalization after a mean duration of 46 days (range 0 – 211). At the end of follow-up haematological and clinical outcomes showed eradication of infection in 24 (96%) of all patients. Radiologically none of all patients showed persisting signs of infection and bone healing was observed in 22 (88%) patients based on changes on conventional radiographic images. One patient had a persistent infection without any bone healing, this patient had an infected non-union prior to surgery. There were two other patients with an initial infected non-union fracture which was not consolidated at last follow-up, although they had successful infection treatment. Another patient had a femoral fracture after surgery that needed additional surgery which did not interfere with eradication of infection. Four (16%) of all patients had initial wound healing problems related to compromised skin and/or soft tissue prior to surgery.

Based on the results of our clinical experience, S53P4 bioactive glass can successfully be used in a one-stage procedure for treatment of chronic osteomyelitis. Eradication of infection was successful in almost all patients and so far no patients required a second surgery due to infection recurrence. Bone healing (incorporation of the bioactive glass) was seen in all patients except for the patients with an initial infected non-union fracture. As a consequence of these results, we changed our institutional protocol for treatment of chronic osteomyelitis to a one-stage approach instead of a two-step approach.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 47 - 47
1 Dec 2015
Geurts J Moh P
Full Access

Treatment of osteomyelitis is a challenge for every surgeon, but even more so in low and middle income countries, because of delay in presentation, lack of resources and troublesome follow-up. We present a series of fifteen patients, treated for osteomyelitis in 2014 in a rural Ghanean hospital with one-year follow up. All bony defects were filled using Bonalive®.

Fifteen consecutive patients with osteomyelitis were included in this study and treated with Bonalive® in March 2014. The group consisted of twelve men and three women (age 10–46y, mean 26y). All patients consented and the study was approved by the hospital's ethical committee. Imaging was performed preoperatively, immediate postoperatively and at various occasions thereafter with final X-rays taken at follow-up in April 2015. All were treated by extensive debridement of the osteomyelitic bone, sequestrectomy, saucerisation and filling of the defect with Bonalive® granules (1,0–2,0 mm in size). Primary closure of the wound was possible in all cases. Fistulae were curetted, not closed. Peroperatively, multiple culture specimens were taken and all patients received a course of intravenous antibiotics for a week, continued orally thereafter for another week. Patients were regularly followed up postoperatively and final review took place in April 2015.

Of all fifteen treated patients, only seven were seen back in April 2015, more than one year postoperatively. The osteomyelitis was located in the femur in seven patients, tibia in seven and the humerus in two. Microbiology showed growth of St. aureus in six patients, Proteus species in six, St. epidermidis in two and pseudomonas in one. Of the seven patients presenting at one year follow-up, all had relief of symptoms for at least three months. Two were completely symptom free, the other five still had one or more draining fistulae. Initial X-rays showed good filling of all osteomyelitic defects with the bioglas granules.

Treatment of osteomyelitis remains a challenge in low and middle income countries. First, there is almost always a delay in presentation and most cases have become chronic by the time they are treated. Secondly, some sequesters were missed and therefore not removed at surgery, due to the lack of good initial x-ray films. Thirdly, there is often no access to microbiological diagnostics. At last, a lot of patients are lost to follow-up.

In our opinion, the Bonalive® product delivered it's claims, but the overall circumstances in which we treated these patients were importantly responsible for the overall suboptimal outcome.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 96 - 96
1 Jul 2014
Geurts J Patel A Helmrich U Hirschmann M Müller-Gerbl M Valderrabano V Hügle T
Full Access

Summary Statement

Cross-talk between cells from immune and bone system might play a role in molecular regulation of subchondral bone sclerosis in osteoarthritis. Macrophages, B-lymphocytes and tartrate-resistant acid phosphatase activity are specifically increased in sclerotic subchondral bone of patients with knee osteoarthritis.

Background

Recent investigations have provided substantial evidence that distinct molecular and morphological changes in subchondral bone tissue, most notably sclerosis, play an active and important role in the pathogenesis of OA. The cellular and molecular regulation of this pathological process remains poorly understood. Here, we investigated whether osteoimmunology, the reciprocal signaling between cells from the immune and bone system, is involved in OA subchondral bone sclerosis.