Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 405 - 405
1 Oct 2006
He Q Wan C Li X Lee G Gardiner T Li G
Full Access

Introduction: The existence of peripheral blood (PB) derived mesenchynal stem cells (PBMSCs) have been documented in several species including human. The circulating skeletal stem cells may provide a new source of stem cells that may be used for skeletal and other tissue engineering applications. The objective of this study is to further investigate and compare the biological characteristics of the PBMSCs with bone marrow derived MSCs in the GFP rats.

Methods: The peripheral blood (PB) from the GFP rats was harvested by cardiac puncture using syringes containing sodium heparin. Mononuclear cells were isolated by density gradient centrifugation method and plated at a density of 1–3~105/cm2 in flasks with D-MEM medium containing 15% FCS. The bone marrow (BM) was also collected for obtaining BMMSCs, the bone chips for osteoblastic cells, and the skin for skin fibroblasts. The phenotypes of the cells were characterized by immunocytochemistry (ICC), and flow cytometry methods. Gene expression profiles of 3-paired PBMSCs and BMMSCs cDNA samples were examined by Affymetrix gene chips microarray analysis. The multipotent differentiation potentials of PBMSCs into osteoblasts, chondrocytes, and adipocytes were examined under specific inductive conditions and checked with lineage specific markers. Finally, the osteogenic potential of the PBMSCs was examined by an in vivo implantation model in which the PBMSCs were seeded with HA-TCP powder complexes, and implanted subcutaneously in the severe compromised immunodeficiency (SCID) mice for 12 weeks, whereas the bone-derived osteoblasts and skin fibroblasts were used as controls.

Results: Compared with the BMMSCs, the PBMSCs shared some but not all common surface markers as demonstrated by (ICC) and flow cytometry examinations. The osteogenic differentiation of PBMSCs was defined with positive staining of type I collagen and osteocalcin; positive staining for alkaline phosphatase and Von Kossa staining for mineralized bone nodules. Adipogenic differentiation was evidenced by positive Oil red-O staining for accumulated lipids, and chondrogenic differentiation by positive type II collagen and Saferinin O positive staining. For gene expression profiles, in the Affymetrix chip general analysis, 83 genes were up regulated and 84 genes down regulated in the PBMSCs (vs BMMSCs, > 2 fold, E-B/B-E> 100, p< 0.05). Most of which genes are related to cell proliferation, differentiation, cytoskeleton, and calcium/iron homeostasis. After 12 weeks implantation in SCID mice, newly formed lamellar bone was clearly evident in the groups with PBMSCs implants, so as in the groups with osteoblasts implants, but only fibrous tissue was found in the group implanted with skin fibroblasts.

Discussion: This study demonstrated that the multi-potent PBMSCs in the GFP rats resemble BMMSCs in many aspects, but they are distinguishable from the BMMSCs in some biological characteristics and gene profiles. Our study has confirmed that these PBMSCs possess osteogenic potential in vitro and in vivo, suggesting that these circulating stem cells could serve as an alternative source as bone marrow derived MSCs for tissue engineering purposes.