Osteocytes are terminally differentiated long-lived cells and account for greater than 95% of the bone cell population. It has been established that osteocytes are connected through their highly developed dendritic network, which is necessary for the maintenance of optimal bone homeostasis. However, little is known on how osteocytes use the network to coordinate their cellular function and communication that requires energy and protein turnover. Here using super-resolution confocal imaging on both live and fixed osteocytes, we demonstrated conclusively that mitochondria are widely distributed and dynamically shared between osteocytes. Using confocal live cell imaging analysis we showed that inhibiting the contact between mitochondria and endoplasmic reticulum (ER) by the knockdown of MFN2 in osteocytes impedes the transfer of mitochondria suggesting the involvement of ER contact with mitochondria in the transfer process. Moreover, we showed that transport of mitochondria between osteocytes within the network enables rescue of osteocytes with dysfunction of mitochondria. Using the 3D tetraculture system with confocal imaging, we identify the transfer of mitochondria from healthy osteocytes enables recovery of mitochondria activities in osteocytes that devoid of mitochondrial DNA by ethidium bromide. The results indicated that when osteocytes are depleted of functional mitochondria, normal parental osteocytes can transfer mitochondria to these stressed osteocytes to provide them with energy. Collectively we show for the first time that the utilisation of mitochondrial transfer enables osteocytes to function with a network and coordinate their cellular activities in response to different energy demands.
Adolescent idiopathic scoliosis (AIS) is the most common paediatric spinal deformity, affecting about 3% of school-aged children worldwide. This disorder occurs in otherwise healthy children who bear no obvious deficiencies in the components of the spinal column itself. The cause of AIS is poorly understood, as is implied by the name. Lesions of the bony composition of the vertebrae, the vertebral endplates, the paraspinous muscles, or the neurological system each have been proposed to explain disease pathogenesis. Progress has been hampered by the absence of an obvious AIS animal model. Consequently we have used genetic studies in human populations to identify factors underlying AIS susceptibility. The complex inheritance and population frequency of AIS suggest that many genetic factors are involved in this disease. To search comprehensively for such factors we previously undertook the first genome-wide association study (GWAS) of AIS susceptibility in a cohort of 419 families in Texas, USA. We found that chromosome 3 SNPs in the proximity of the We tested more than 327 000 single-nucleotide polymorphisms (SNPs) across all human autosomes for association with disease.Introduction
Methods
High-pressure injection injuries occur infrequently but are usually work-related and involve the non-dominant hand. The neck is a very rare site for such an injury. We describe the management of a 36-year-old man with a high-pressure grease-gun injection injury to his neck causing a cervical spinal cord injury. He developed severe motor and sensory changes which were relieved by surgical removal of the grease through anterior and posterior approaches.