Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 7 - 7
1 Jan 2019
Owston H Moisley K Tronci G Giannoudis P Russell S Jones E
Full Access

The current ‘gold’ standard surgical intervention for critical size bone defect repair involves autologous bone grafting, that risks inadequate graft containment and soft tissue invasion. Here, a new regenerative strategy was explored, that uses a barrier membrane to contain bone graft. The membrane is designed to prevent soft tissue ingrowth, whilst supporting periosteal regrowth, an important component to bone regeneration. This study shows the development of a collagen-based barrier membrane supportive of periosteal-derived mesenchymal stem cell (P-MSC) growth.

P-MSC-homing barrier membranes were successfully obtained with nonaligned fibres, via free-surface electrospinning using type I collagen and poly(E-caprolactone) in 1,1,1,3,3,3-Hexafluoro-2-propanol. Introduction of collagen in the electrospinning mixture was correlated with decreased mean fibre diameter (d: 319 nm) and pore size (p: 0.2–0.6 μm), with respect to collagen-free membrane controls (d: 372 nm; p: 1–2 μm). Consequently, as the average MSC diameter is 20 μm, this provides convincing evidence of the creation of a MSC containment membrane.

SEM-EDX confirmed Nitrogen and therefore collagen fibre localisation. Quantification of collagen content, using Picro Sirius Red dye, showed a 50% reduction after 24 hours (PBS, 37 °C), followed by a drop to 25% at week 3. The collagen-based membrane has a significantly higher elastic modulus compared to collagen-free control membranes. P-MSCs attached and proliferated when grown onto collagen-based membranes, imaged using confocal microscopy over 3 weeks. A modified transwell cell migration assay was developed, using MINUSHEET® tissue carriers to assess barrier functionality. In line with the matrix architecture, the collagen-based membrane proved to prevent cell migration (via confocal microscopy) in comparison to the migration facilitating positive control.

The aforementioned results obtained at molecular, cellular and macroscopic scales, highlight the applicability of this barrier membrane in a new ‘hybrid graft’ regenerative approach for the surgical treatment of critical size bone defects.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 8 - 8
1 Aug 2012
Tan H Jones E Kozera L Henshaw K McGonagle D Giannoudis P
Full Access

Background and objectives

Fracture healing represents a physiological process regulated by a variety of signalling molecules, growth factors and osteogenic progenitor cells. Bone healing following trauma is associated with increased serum concentrations of several pro-inflammatory and angiogenic growth factors1. Platelet-derived growth factor (PDGF) has been shown to stimulate mesenchymal stem cell (MSC) proliferation in vitro. However, the in vivo relationship between the levels of PDGF and the numbers of MSCs in humans has not yet been explored. The aim of this study was to investigate PDGF release in the peripheral circulation following trauma and to correlate it with the numbers of MSCs in iliac crest bone marrow (BM) aspirate and in peripheral blood.

Methods

Trauma patients with lower extremity fractures (n=12, age 18-63 years) were recruited prospectively. Peripheral blood was obtained on admission, and at 1, 3, 5 and 7 days following admission. The serum was collected and PDGF was measured using the enzyme-linked immuno-sorbent assay (ELISA) technique. Iliac crest (BM) aspirate (20ml) and peripheral blood (PB) (20ml) was obtained on days 0-9 following admission. MSCs were enumerated using standard colony-forming unit fibroblasts (CFU-F) assay.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 35 - 35
1 May 2012
Cox G Giannoudis P Boxall S Buckley C Jones E McGonagle D
Full Access

Introduction

Iliac crest bone marrow aspirate (ICBMA) is frequently cited as the ‘gold-standard’ source of MSCs. MSCs have been shown to reside within the intramedullary (IM) cavities of long-bones [Nelea, 2005] however a comparative assessment with ICBMA has not yet been performed and the phenotype of the latter compartment MSCs remains undefined in their native environment.

Methods

Aspiration of the IM cavities of 6 patients' femurs with matched ICBMA was performed. The long-bone-fatty-bone-marrow (LBFBM) was filtered (70μm) to separate liquid and solid fractions and the solid fraction was briefly (60min, 37oC) digested with collagenase. MSC enumeration was performed using the colony-forming-unit-fibroblast (CFU-F) assay and quantification of cells with the CD45low CD271+ phenotype by flow-cytometry. [Jones 2002, Buhring 2007] MSCs were cultured and standard expansion media and passage 2 cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 5 - 5
1 May 2012
Cox G McGonagle D Boxall S Buckley C Jones E Giannoudis P
Full Access

Introduction

Therapeutic exploitation of MSCs in orthopaedics has been tempered by their scarcity within ‘gold-standard’ iliac crest bone marrow aspirate (ICBMA) and the resulting need to expand cells in vitro. This is time-consuming, expensive and results in cells with a reduced differentiation capacity. [Banfi 2000] The RIA is a device that provides continuous irrigation and suction during reaming of long bones. Aspirated contents pass via a filter, trapping bony-fragments, before moving into a ‘waste’ bag, from which MSCs have been previously isolated. [Porter 2009] We hypothesised that ‘waste’ RIA bag contains more MSCs than a standard aspirated volume of ICBMA (30 ml). We further hypothesised than a fatty solid phase within this ‘waste bag’ contains many MSCs trapped within the adipocyte-rich stromal network and hence requiring an enzymatic digestion for their efficient release [Jones 2006].

Methods

The discarded filtrate ‘waste’ bag that contained saline from marrow cavity irrigation procedure from RIA reaming (7 patients) was filtered (70μm) and the solid fraction digested for 60min (37oC) with collagenase. MSC enumeration was performed using the colony-forming-unit-fibroblast (CFU-F). Following culture in standard expansion media, passage 2 cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages and their phenotype was assessed using flow cytometry. ICBMA from the same patients was used as controls.