Optimal knee joint function obviously requires a delicate balance between the osseous anatomy and the surrounding soft tissues, which is distorted in the case of joint line elevation (JLE). Although several studies have found no correlation between JLE and outcome, others have linked JLE to inferior results. The purpose of this in vitro investigation was to evaluate the effect of JLE on tibiofemoral kinematics and collateral ligament strains. Six cadaver knees were equipped with reflective markers on femur and tibia and CT scans were made. A total knee arthroplasty (TKA) was performed preserving the native joint level. The knees were then tested in passive flexion-extension and squatting in a knee kinematics simulator while marker positions were recorded with an optical system. During squatting quadriceps forces were measured as well as tibio-femoral contact pressures. Finally, a revision TKA was performed with JLE by 4 mm. The femoral component was downsized and a thicker insert was used. The knees were again tested as before. Based on the bony landmarks identified in the CT scans and the measured trajectories of the markers, relative tibiofemoral kinematics could be calculated as well as distance changes between insertions of the collateral ligaments. Statistical tests were carried out to detect significant differences in kinematic patterns, ligaments elongation, tibiofemoral contact pressures and quadriceps forces between the primary TKA and after JLE.Introduction
Materials and Methods
In posterior stabilised total knee replacement
(TKR) a larger femoral component is sometimes selected to manage the
increased flexion gap caused by resection of the posterior cruciate
ligament. However, concerns remain regarding the adverse effect
of the increased anteroposterior dimensions of the femoral component
on the patellofemoral (PF) joint. Meanwhile, the gender-specific
femoral component has a narrower and thinner anterior flange and
is expected to reduce the PF contact force. PF contact forces were
measured at 90°, 120°, 130° and 140° of flexion using the NexGen
Legacy Posterior Stabilized (LPS)-Flex Fixed Bearing Knee system
using Standard, Upsized and Gender femoral components during TKR.
Increasing the size of the femoral component significantly increased
mean PF forces at 120°, 130° and 140° of flexion (p = 0.005, p <
0.001 and p <
0.001, respectively). No difference was found in
contact force between the Gender and the Standard components. Among
the patients who had overhang of the Standard component, mean contact
forces with the Gender component were slightly lower than those
of the Standard component, but no statistical difference was found
at 90°, 120°, 130° or 140° of flexion (p = 0.689, 0.615, 0.253 and
0.248, respectively). Upsized femoral components would increase PF forces in deep knee
flexion. Gender-specific implants would not reduce PF forces.
We investigated whether the extension gap in total knee replacement (TKR) would be changed when the femoral component was inserted. The extension gap was measured with and without the femoral component in place in 80 patients with varus osteoarthritis undergoing posterior-stabilised TKR. The effect of a post-operative increase in the size of the femoral posterior condyles was also evaluated. The results showed that placement of the femoral component significantly reduced the medial and lateral extension gaps by means of 1.0 mm and 0.9 mm, respectively (p <
0.0001). The extension gap was reduced when a larger femoral component was selected relative to the thickness of the resected posterior condyle. When the post-operative posterior lateral condyle was larger than that pre-operatively, 17 of 41 knees (41%) showed a decrease in the extension gap of >
2.0 mm. When a specially made femoral trial component with a posterior condyle enlarged by 4 mm was tested, the medial and lateral extension gaps decreased further by means of 2.1 mm and 2.8 mm, respectively. If the thickness of the posterior condyle is expected to be larger than that pre-operatively, it should be recognised that the extension gap is likely to be altered. This should be taken into consideration when preparing the extension gap.