header advert
Results 1 - 14 of 14
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 69 - 69
1 Mar 2017
Muratoglu O Oral E Suhardi V Bichara D Rubash H Freiberg A Malchau H
Full Access

Introduction

Radiation cross-linking of ultrahigh molecular weight polyethylene (UHMWPE) has reduced the in vivo wear and osteolysis associated with bearing surface wear (1), significantly reducing revisions associated with this complication (2). Currently, one of the major and most morbid complications of joint arthroplasty is peri-prosthetic infection (3). In this presentation, we will present the guiding principles in using the UHMWPE bearing surface as a delivery device for therapeutic agents and specifically antibiotics. We will also demonstrate efficacy in a clinically relevant intra-articular model.

Materials and Methods

Medical grade UHMWPE was molded together with vancomycin at 2, 4, 6, 8, 10 and 14 wt%. Tensile mechanical testing and impact testing were performed to determine the effect of drug content on mechanical properties. Elution of the drug was performed in phosphate buffered saline (PBS) for up to 8 weeks and the detection of the drug in PBS was done by UV-Vis spectroscopy. A combination of vancomycin and rifampin in UHMWPE was developed to address chronic infection and layered construct containing 1 mm-thick drug-containing UHMWPE in the non-load bearing regions was developed for delivery. In a lapine (rabbit) intra-articular model (n=6 each), two plug of the layered UHMWPE construct were placed in the trochlear grove of the rabbit femoral surface and a porous titanium rod with a pre-grown biofilm of bioluminescent S. Aureus was implanted in the tibia. Bioluminescent imaging was employed to visualize and quantify the presence of the bacteria up to 3 weeks.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 26 - 26
1 Mar 2017
Muratoglu O Suhardi V Bichara D Kwok S Freiberg A Rubash H Yun S Oral E
Full Access

Introduction

About 2% of primary total joint replacement arthroplasty (TJA) procedures become infected. Periprosthetic joint infection (PJI) is currently one of the main reasons requiring costly TJA revisions, posing a burden on patients, physicians and insurance companies.1 Currently used drug-eluting polymers such as bone cements offer limited drug release profiles, sometimes unable to completely clear out bacterial microorganisms within the joint space. For this study we determined the safety and efficacy of an antibiotic-eluting UHMWPE articular surface that delivered local antibiotics at optimal concentrations to treat PJI in a rabbit model.

Materials and Methods

Skeletally mature adult male New Zealand White rabbits received either two non-antibiotic eluting UHMWPE (CONTROL, n=5) or vancomycin-eluting UHMWPE (TEST, n=5) (3 mm in diameter and 6 mm length) in the patellofemoral groove (Fig. 1). All rabbits received a beaded titanium rod in the tibial canal (4 mm diameter and 12 mm length). Both groups received two doses of 5 × 107 cfu of bioluminescent S. aureus (Xen 29, PerkinElmer 119240) in 50 µL 0.9 % saline in the following sites: (1) distal tibial canal prior to insertion of the rod; (2) articular space after closure of the joint capsule (Fig. 1). None of the animals received any intravenous antibiotics for this study. Bioluminescence signal (photons/second) was measured when the rabbits expired, or at the study endpoint (day 21). The metal rods were stained with BacLight® Bacterial Live-Dead Stain and imaged using two-photon microscopy to detect live bacteria. Hardware, polyethylene implants and joint tissues were sonicated to further quantify live bacteria via plate seeding.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 124 - 124
1 Feb 2017
Li G Dimitriou D Tsai T Park K Kwon Y Freiberg A Rubash H
Full Access

Introduction

An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical transepicondylar axis (sTEA) and geometric center axis (GCA).

Methods

Eleven patient with advanced medial knee osteoarthritis (age: 51–73 years) who scheduled for a CR TKA and 9 knees from 8 healthy subjects (age: 23–49 years) were recruited. 3D models of the tibia and femur were created from their MR images. Dual fluoroscopic images of each knee were acquired during a weight-bearing single leg lunge. The OA knee was imaged again one year after surgery using the fluoroscopy during the same weight-bearing single leg lunge. The in vivo positions of the knee along the flexion path were determined using a 2D/3D matching technique. The GCA and sTEA were determined based on existing methods. Besides the anterior-posterior translation, the femoral condyle heights were determined using the distances from the medial and lateral epicondyle centers on the sTEA and GCA to the tibial plateau surface in coronal plane (Fig. 1). The paired t-test was applied to compare the medial and lateral condyle motion within each group (Healthy, OA, and CR-TKA). Two-way ANOVA followed post hoc Newman–Keuls test was adopted to detect significant differences among the groups. p<0.05 was considered significant.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 135 - 135
1 Feb 2017
Varadarajan KM Patel R Zumbrunn T Rubash H Malchau H Freiberg A Muratoglu O
Full Access

Introduction

Dual-mobility (DM) liners provide increased range of motion and stability. However, large head diameters have been associated with anterior hip pain due to impingement with surrounding soft-tissues, particularly the iliopsoas. Further, during hip extension the liner can get trapped due to anterior soft-tissue impingement that resists rotation being imparted to the liner from posterior stem-liner contact. Over time this can cause liner rim damage, leading to intra-prosthetic dislocation of the small diameter inner head. To address this, an anatomically contoured dual mobility (ACDM) liner was designed to reduce the volume of the liner below the equator that can interact with soft-tissues (Fig. 1). In this study, we utilized finite element analysis to evaluate tendon-liner contact pressure and tendon stresses with ACDM and conventional designs during hip extension, wherein the posterior edge of liner is in contact with the stem while the anterior edge is exposed to the soft-tissue.

Methods

The average uniaxial stiffness (350 N/mm), and average dimensions (width × thickness = 14mm × 4mm) of 10 cadaver psoas tendon samples were determined in a separate study. The iliopsoas tendon was modelled as a Yeoh hyper-elastic material, and the material constants were tuned to match the experimental uniaxial test data. Cadaver specific FEA models were created for 5 specimens (10 hips) using computed tomography (CT) scans. The implant components were modeled as being rigid relative to the iliopsoas tendon. The iliopsoas tendon was modelled as extending from its insertion point on the lesser trochanter to the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. Appropriately sized DM components were implanted virtually for each specimen. Once placed in its proper position, the liner was rotated about the flexion axis until it contacted the stem posteriorly to represent its orientation during hip extension (Fig. 2). A 500N tensile load was applied to the iliopsoas tendon and the average/max stresses within the tendon, and average/max contact pressures between the tendon and liner were measured.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 15 - 15
1 May 2016
Varadarajan K Zumbrunn T Duffy M Patel R Freiberg A Malchau H Rubash H Muratoglu O
Full Access

Introduction

Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile liner. However, distal regions of the liner can impinge on soft-tissues like hip capsule and iliopsoas, leading to anterior hip pain. Additionally, soft-tissue impingement may trap the mobile liner, leading to excessive loading of the liner rim, from engagement with the femoral stem, and subsequent intra-prosthetic dislocation. The hypothesis of this study was that reducing the liner profile below the equator (contoured design) can mitigate soft-tissue impingement without compromising inner-head pull-out resistance and overall hip joint stability (Fig. 1).

Methods

The interaction of conventional and contoured liners with anterior soft-tissues was evaluated in 10 cadaveric hips (5 specimens; 2 male, 3 female; age 65 ± 10 yrs; liner diameter 42–48mm) via visual observation and fluoroscopic imaging. A metal wire was sutured to the deep fibers of the iliopsoas tendon/muscle, and metal wires were embedded in the mobile liners for fluoroscopic visualization (Fig. 2). All soft-tissue except the anterior hip capsule and iliopsoas was removed, and a rope was attached to the iliopsoas to apply tension along its natural orientation.

Resistance to inner-head pull-out was evaluated via Finite Element Analysis (FEA) by simulating a full cycle of insertion of the inner head into the mobile liner and subsequent pullout. The femoral head, acetabular shell, and stem were modeled as rigid, while the mobile liner was modeled as plastically deformable. Hip joint stability was evaluated by dynamic simulations in for two dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal hip rotation; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction. A 44 mm diameter conventional and a 44 mm contoured liner were evaluated during these tests.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 122 - 122
1 May 2016
Patel R Zumbrunn T Varadarajan K Freiberg A Rubash H Muratoglu O Malchau H
Full Access

Introduction

Dual-mobility (DM) liners have increased popularity due to the range of motion and stability provided by these implants. However, larger head diameters have been associated with anterior hip pain, due to surrounding soft-tissue impingement, particularly the iliopsoas. To address this, an anatomically contoured dual mobility (ACDM) liner was designed by reducing the volume of the liner below the equator (Fig1). Previous cadaver studies have shown that the ACDM significantly reduces iliopsoas tenting and trapping of the liner compared to conventional designs. We created a finite element study based on previous cadaver testing to further analyze the effectiveness of the ACDM design in reducing soft-tissue impingement, specifically the tendon-liner contact pressure and the tendon stress.

Methods

The finite element model was developed within COMSOL 4.3b. The psoas tendon was modelled as a Yeoh hyper-elastic Material, which uses 3 constants (c1-c3), density (1.73g/cm3) and a bulk modulus (26GPa)[Hirokawa,2000]. In a previous, separate study, the average stiffness of 10 psoas tendon samples (5 cadavers), were measured to be 339[N/mm] in the linear region with average width and thickness of 14mmX4mm. The 3 constants were tuned to match experimental uniaxial test data, and were 5[GPa], 0[Gpa], and 46[GPa] for c1, c2, and c3 respectively.

The implant components were rigidly modeled relative to the psoas. Cadaver specific CT models were used to create the FEA geometry. The insertion points for the Psoas were digitally determined on the proximal end of the lesser trochanter, and the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. These insertion points determined the length of the psoas and its relative position to the femoral head in 3D. The specific liner size and position for each cadaver was determined by implant planning with the CT models. In this abstract, we only present data for 2 specimens (left/right hips) with 44mm conventional DM, and 44mm ACDM, matching specimen anatomy. A 500N tensile load was applied to the psoas tendon proximally to simulate moderate physiological loading, the average/max stresses and contact pressures between the psoas and the two liner designs were determined.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 80 - 80
1 May 2016
Nebergall A Freiberg A Greene M Malchau H Muratoglu O Rowell S Zumbrunn T Varadarajan K
Full Access

Introduction

The large diameter mobile polyethylene liner of the dual mobility implant provides increased resistance to hip dislocation. However, a problem specific to the dual mobility system is intra-prosthetic dislocation (IPD), secondary to loss of the retentive rim, causing the inner head to dissociate from the polyethylene liner. We hypothesized that impingement of the polyethylene liner with the surrounding soft-tissue inhibits liner motion, thereby facilitating load transfer from the femoral neck to the liner and leading to loss of retentive rim over time. This mechanism of soft-tissue impingement with the liner was evaluated via cadaver experiments, and retrievals were used to assess polyethylene rim damage.

Methods

Total hip arthroplasty was performed on 10 cadaver hips using 3D printed dual mobility components. A metal wire was sutured to the posterior surface (underside) of the iliopsoas, and metal wires were embedded into grooves on the outer surface of the liner and inner head to identify these structures under fluoroscopy. Tension was applied to the iliopsoas to move the femur from maximum hyperextension to 90° of flexion for the purpose of visualizing the iliopsoas and capsule interaction with the mobile liner. The interaction of the mobile liner with the iliopsoas was studied using fluoroscopy and direct visual observation. Fifteen retrieved dual mobility liners were assessed for rim edge and rim chamfer damage. Rim edge damage was defined as any evidence of contact, and rim chamfer damage was classified into six categories: impact ribs on the chamfer surface, loss of machining marks, scratching or pitting, rim deformation causing a raised lip, a rounded rim edge, or embedded metal debris.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 63 - 63
1 Jan 2016
Varadarajan KM Zumbrunn T Duffy M Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

Introduction

Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile insert. However, distal regions of the insert may impinge on soft tissues like the iliopsoas, leading to groin pain. Additionally, soft-tissue impingement may trap the mobile insert, leading to excessive loading of the insert rim from engagement with the femoral neck and subsequent intra-prosthetic dislocation. To address this, an Anatomically Contoured Dual Mobility (ACDM) insert with a soft-tissue friendly distal geometry was developed (Fig.1). Previously, the ACDM insert was shown to maintain the femoroacetabular contact area and joint stability of a conventional DM insert [Duffy et al. BJJ 2013, 95-B:34, p298; Zumbrunn et al. BJJ 2013, 95-B:34, p605]. The goal of this study was to utilize cadaver specimens to verify whether the ACDM insert could reduce soft-tissue impingement relative to a conventional DM insert.

Methods

Fluoroscopic imaging was used to evaluate soft-tissue interaction with ACDM and conventional DM inserts in four cadaver hips (Fig. 2). A metal wire was sutured to the deep fibers of the iliopsoas muscle/tendon, and metal wires were embedded in the inner head and the mobile insert for fluoroscopic visualization. All soft tissue except the anterior hip capsule and iliopsoas were removed, and a rope was attached to the iliopsoas to apply tension along its native orientation. A femoral stem and a DM acetabular shell were implanted sothe ACDM or conventional DM inserts, together with the inner heads, could be inserted. Fluoroscopic images of the hip joint were taken at maximum hyperextension, 0°, 15° and 30° hip flexion with the insert positioned in neutral and anteverted orientations (Fig. 2). Neutral orientation corresponded to the insert axis parallel to the femoral neck, while anteverted orientation corresponded to a flexed insert that contacted the femoral neck posteriorly.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 408 - 408
1 Dec 2013
Varadarajan KM Duffy M Zumbrunn T Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

Introduction:

Large diameter femoral heads have been used successfully to prevent dislocation after Total Hip Arthroplasty (THA). However, recent studies show that the peripheral region of contemporary femoral heads can directly impinge against the native soft-tissues, particularly the iliopsoas, leading to activity limiting anterior hip pain. This is because the spherical articular surface of contemporary prosthesis overhangs beyond that of the native anatomy (Fig. 1). The goal of this research was to develop an anatomically shaped, soft-tissue friendly large diameter femoral head that retains the benefits of contemporary implants.

Methods:

Various Anatomically Contoured femoral Head (ACH) designs were constructed, wherein the articular surface extending from the pole to a theta (θ) angle, matched that of contemporary implants (Fig. 2). However, the articular surface in the peripheral region was moved inward towards the femoral head center, thereby reducing material that could impinge on the soft-tissues (Fig. 1 and Fig. 2). Finite element analysis was used to determine the femoroacetabular contact area under peak in vivo loads during different activities. Dynamic simulations were used to determine jump distance prior to posterior dislocation under different dislocation modes. Published data was used to compare the implant articular geometry to native anatomy (Fig. 3). These analyses were used to optimize the soft-tissue relief, while retaining the load bearing contact area, and the dislocation resistance of conventional implants.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 605 - 605
1 Dec 2013
Zumbrunn T Varadarajan KM Duffy M Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

INTRODUCTION

Femoral head diameter has a major influence on stability and dislocation resistance of the hip joint after Total Hip Arthroplasty (THA). Dual Mobility (DM) implants can also reduce the risk of dislocation due the large diameter mobile liner which forms the femoroacetbular articulation. However, recent studies have shown that large head prostheses can directly impinge against native soft tissues, particularly the iliopsoas, leading to anterior hip pain. Dual mobility systems have emerged as a revision option in the treatment of failed metal on metal devices because of the high incidence of post revision instability secondary to abductor loss and need for capsulectomy. We hypothesized that an Anatomically Contoured Dual Mobility (ACDM) liner could provide joint stability while better accommodating the soft tissues surrounding the hip joint.

METHODS

The dislocation resistance of a 44 mm ACDM implant was compared to that of a 44 mm conventional DM liner. Both implants consisted of a 28 mm inner small diameter head and the liner was abducted to be in the worst case position for dislocation (Fig. 1). The ACDM liner was based on a 44 mm sphere with smaller radii used to contour the peripheral region below the equator of the liner. MSC Adams was used for dynamic simulations based on two previously described dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal rotation of the hip and a posterosuperior directed joint force; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction and a posteromedial force direction (Fig. 2). Impingement-free motion (motion without neck impingement against the acetabular cup) and jump distance (head separation from acetabulum at dislocation) were measured for each implant. The acetabular cup was placed at 42.5° abduction and 19.7° anteversion, while the femoral component was anteverted by 9.75° based on published data.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 407 - 407
1 Dec 2013
Varadarajan KM Zumbrunn T Duffy M Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

Introduction:

Dual Mobility (DM) hip implants have gained popularity for the treatment and preventions of instability. In DM implants a large diameter mobile insert matches the native femoral head size. However, studies have shown that the peripheral regions of such large diameter implants overhang beyond the native anatomy and can directly impinge against nearby soft tissues, especially the iliopsoas, leading to groin pain (Fig. 1). Soft-tissue impingement can also trap the mobile DM insert, leading to damage of its peripheral rim, which secures the small diameter inner head (Fig. 2). The goal of this research was to develop an anatomically contoured soft-tissue friendly DM insert.

Methods:

Various Anatomically Contoured Dual Mobility (ACDM) insert designs were constructed, wherein the outer articular surface extending from the pole to a theta (θ) angle, matched that of contemporary implants (Fig. 3). However, the articular surface in the peripheral region was moved inward towards the center, thereby reducing implant volume that could impinge on the soft tissue (Fig. 1 and Fig. 3). Finite element analyses were used to determine the insert-acetabular contact area under peak in vivo loads during different activities. Finite element analysis was also used to determine resistance to extraction of the inner head. Published data was used to compare the implant articular geometry to native anatomy. These analyses were used optimize the soft-tissue relief, while matching the load bearing contact area and the resistance to extraction of the inner head in contemporary implants.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 297 - 297
1 Dec 2013
Duffy M Varadarajan KM Zumbrunn T Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

Introduction

Large diameter femoral heads provide increased range-of-motion and reduced dislocation rates compared to smaller diameter femoral heads. However, several recent studies have reported that contemporary large head prostheses can directly impinge against the local soft tissues leading to anterior hip pain. To address this we developed a novel Anatomically Contoured large diameter femoral Head (ACH) that maintains the profile of a large diameter femoral head over a hemispherical portion and then contours inward the distal profile of the head for soft-tissue relief. We hypothesized that the distal contouring of the ACH articular surface would not affect contact area. The impact of component placement, femoral head to acetabular liner radial clearance, and joint loading during different activities was investigated.

Methods

A finite element model was used to assess the femoroacetabular contact area of a 36 mm diameter conventional head and a 36 mm ACH (Fig. 1). It included a rigid acetabular shell, plastically deformable UHMWPE acetabular liner, rigid femoral head and rigid femoral stem. The femoral stem was placed at 0°, 10° and 20° of anteversion. The acetabular shell and liner were placed in 20°, 40° and 60° of abduction and 0°, 20° and 40° of anteversion. The femoral head to acetabular liner radial clearances modeled were 0.06 mm, 0.13 mm and 0.5 mm. Three loading cases corresponding to peak in vivo loads during walking, chair sit and deep-knee bend were analyzed (Fig. 2). This allowed a range of component positions and maximum joint loads to be studied.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 298 - 298
1 Dec 2013
Duffy M Varadarajan KM Zumbrunn T Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

Introduction

Dual mobility (DM) implants provide increased stability and range-of-motion through the use of a large diameter mobile liner articulating against an acetabular shell. However, recent studies have reported that such contemporary large head prostheses can directly impinge against the local soft tissues leading to anterior hip pain. To address this drawback, a novel Anatomically Contoured Dual Mobility (ACDM) liner was developed that maintains the outer spherical geometry over an approximately hemispherical portion and then contours inward the distal profile of the DM liner for soft-tissue relief. The extent of the inner profile encapsulating the small diameter head is increased to provide more coverage of the head and maintain the inner head pullout force. We hypothesized that the ACDM liner for soft-tissue relief would not affect retention of the small diameter inner head or liner-acetabular load-bearing contact area.

Methods

A finite element model to evaluate head retention and contact mechanics was created with a rigid acetabular shell, a plastically deformable UHMWPE DM liner, a rigid femoral head and a rigid femoral stem. For the head retention analysis, the extent of head coverage (Fig. 1) was optimized to match the inner head pullout force of a conventional DM liner. Contact mechanics of a conventional DM and ACDM liner were analyzed at the maximum joint load of three activities: gait, deep-knee bend and chair sit. One set of simulations was completed with the mobile liner and head axes aligned and another with the axes mal-aligned so that the mobile liner rim was adjacent to the femoral stem neck and the potential area of contact was away from the mobile liner apex. This allowed a broader range of potential contact to be assessed including what was determined to be a worst-case alignment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 606 - 606
1 Dec 2013
Zumbrunn T Varadarajan KM Duffy M Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

INTRODUCTION

Femoral head diameter has a major influence on stability and dislocation resistance after Total Hip Arthroplasty (THA). Although routine use of large heads is common, several recent studies have shown that contemporary large head prostheses can directly impinge against native soft tissues, particularly the iliopsoas which wraps around the femoral head, leading to refractory anterior hip pain. To address this, we developed a novel Anatomically Contoured large diameter femoral Head (ACH). We hypothesized that anatomical contouring of the ACH implant for soft tissue relief would not compromise dislocation resistance, and the ACH implant would provide increased stability compared to small heads.

METHODS

In this study the dislocation resistance of a 36 mm ACH was compared to that of 28 mm and 36 mm contemporary heads. The ACH implant was based on a 36 mm sphere with smaller radii used to contour the peripheral region below the equator of the head. MSC Adams was used for dynamic simulations based on two previously described dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal rotation of the hip and a posterosuperior directed joint force; (B) posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction and a posteromedial force direction (Fig. 1). Impingement-free motion (motion without neck impingement against the acetabular liner) and jump distance (head separation from acetabulum prior to dislocation) were measured to evaluate the dislocation risk of each implant. The acetabular cup was placed at 42.5° abduction and 19.7° anteversion, while the femoral component was anteverted by 9.75° based on published data.