Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 88 - 88
14 Nov 2024
Gögele CL Fleischmann N Hofman S Frank E Werner C Kokozidou M Tanzil GS
Full Access

Introduction

Diabetes mellitus type 2 (DMT2) patients often develop Achilles tendon (AS) degeneration. The ZDF rat model is often used to study DMT2. Hence, this study investigated whether tenocytes isolated from diabetic and non diabetic ZDF rats respond differentially to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis (TNF)α.

Method

AS tenocytes isolated from adult diabetic (fa/fa) or lean (fa/+) Zucker Diabetic Fatty (ZDF) rats were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L versus 4.5 g/L glucose). Tendons were characterized histopathologically using Movin score. Tenocyte survival, metabolic activity, gene and/or protein expression of the main tendon extracellular matrix (ECM) component collagen type 1, the myofibroblast marker alpha smooth muscle actin (αSMA, Acta2), complement regulatory factors, the antioxidant defense enzyme heme oxygenase-1 (Hmox1), suppressors of cytokine signaling (Socs)1 and Soc3 were analyzed.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 50 - 50
1 Nov 2018
Sternecker K Geist J Beggel S Dietz-Laursonn K de la Fuente M Frank H Furia J Milz S Schmitz C
Full Access

A substantial body of evidence supports the use of extracorporeal shock wave therapy (ESWT) for fracture non-unions in human medicine. However, the success rate (i.e., radiographic union at six months after ESWT) is only approximately 75%. Detailed knowledge regarding the underlying mechanisms that induce bio-calcification after ESWT is limited. The aim of the present study was to analyse the biological response within mineralized tissue of a new invertebrate model organism, the zebra mussel Dreissena polymorpha, after exposure with extracorporeal shock waves (ESWs). Mussels were exposed to ESWs with positive energy density of 0.4 mJ/mm2 or were sham exposed. Detection of newly calcified tissue was performed by concomitantly exposing the mussels to fluorescent markers. Two weeks later, the fluorescence signal intensity of the valves was measured. Mussels exposed to ESWs showed a statistically significantly higher mean fluorescence signal intensity within the shell zone than mussels that were sham exposed. Additional acoustic measurements revealed that the increased mean fluorescence signal intensity within the shell of those mussels that were exposed to ESWs was independent of the size and position of the focal point of the ESWs. These data demonstrate that induction of bio-calcification after ESWT may not be restricted to the region of direct energy transfer of ESWs into calcified tissue. The results of the present study are of relevance for better understanding of the molecular and cellular mechanisms that induce formation of new mineralized tissue after ESWT. Specifically, bio-calcification following ESWT may extend beyond the direct area of treatment.