Tibial tubercle osteotomy (TTO) is a complex surgical procedure with a significant risk of complications, which include nonunion and tibial fracture. To determine whether an additional suture tape augmentation can provide better biomechanical stability compared with standard screw fixation. Five matched pairs of human cadaveric knees were divided into 2 groups: the first group underwent standard TTO fixation with 2 parallel screws. The second group underwent a novel fixation technique, in which a nonabsorbable suture tape (FiberTape) in a figure-of-8 construct was added to the standard screw fixation. Tubercular fragment migration of >50% of the initial distalization length was defined as clinical failure Tubercular fragment displacement during cyclic loading and pull-to-failure force were recorded and compared between the 2 groups.Abstract
Introduction
Methods
The aim of this study is to outline the steps and techniques required to create a patient specific 3D printed guide for the accurate placement of the origin of the femoral tunnel for single bundle ACL reconstruction. Placements of the femoral tunnels for ACL reconstruction have changed over the years. Most recently there has been a trend towards placing the tunnels in a more anatomic position. There has been subsequent debate as to where this anatomic position should be. The problem with any attempt at consensus over the placement of an anatomic landmark is that each patient has some variation in their positioning and therefore a fixed point for all has compromise for all as it is an average. Our aim was to attempt to make a cost effective and quick custom guide that could allow placement of the center of the patients’ newly created femoral tunnel in the mid position of their contralateral native ACL femoral footprint.Aim
Introduction
The aim of this study is to outline the steps and techniques required to create a patient specific 3D printed guide for the accurate placement of the origin of the femoral tunnel for single bundle ACL reconstruction. Placements of the femoral tunnels for ACL reconstruction have changed over the years 1,2. Most recently there has been a trend towards placing the tunnels in a more anatomic position. There has been subsequent debate as to where this anatomic position should be 3. The problem with any attempt at consensus over the placement of an anatomic landmark is that each patient has some variation in their positioning and therefore a fixed point for all has compromise for all, as it is an average 4. Our aim was to attempt to make a cost effective and quick custom guide that could allow placement of the center of the patients’ newly created femoral tunnel in the mid position of their contralateral native ACL femoral footprint.Aim
Introduction
Many orthopaedic procedures require implants to be trialled before definitive implantation. Where this is required, the trials are provided in a set with the instrumentation. The most common scenario this is seen in during elective joint replacements. In Scotland (2007) the Scottish Executive ( Several implants which are commonly used within Glasgow Royal Infirmary and do not have trials were identified. These implants were then CT scanned within their sealed and sterile packaging without contamination. Digital 3D surface renders of the models were created using free open source software (OsiriX, MeshLab, NetFabb). These models were then processed in to a suitable format for 3D printing using laser sintering via a cloud 3D printing bureau ( The implants produced were accurate facsimiles of the original implant with dimensions within 0.7mm. The implants were cost effective, an example being a rim mesh was reproduced in polyamide PA220 plastic for £3.50 and in 316L stainless steel for £15. The models were produced within 10 days of scanning. The stainless steel trials were durable and suitable for reprocessing and resterilisation. The production of durable, low cost and functional implant trials all completed in department was successful. The cost of production of each implant is so low that it would be offset if just one incorrect implant was opened during a single procedure. With some of the implants tested, the trials would have paid for themselves 100 times. This is a simple and cost saving technique that would help reduce department funding and aid patient care.
We are taking very expensive cutting edge technology, usually reserved for industry, and using it with the help of open source free software and a cloud 3D printing services to produce custom and anatomically unique patient individual implants for only £32. This is approx. 1/100th of the traditional cost of implant production. 3D printing and rapid prototyping in surgery is an expanding technology. It is often used for preoperative planning, procedure rehearsal and patient education. There have been recent advances in orthopaedic surgery for the development of patient specific guides and jigs. The logical next step as the technology advances is the production of custom orthopaedic implants. Our aim was to use freely available open source software, a personal computer and consumer access online cloud 3D printing services to produce an accurate patient specific orthopaedic implant without utilising specialist expertise, capital expenditure on specialist equipment or the involvement of traditional implant manufacturing companies. This was all to be done quickly, cost effectively and in department.Summary Statement
Introduction
When having to remove broken or embedded metal implants using high speed burrs, the consequence is often a significant amount of metal debris which becomes embedded in the soft tissues. This may then act as a source for a foreign body inflammatory reaction or as a third body wear in the situation of joint arthroplasty. We describe a simple, cheap and effective method of reducing this debris using only a sterile water-based lubricating gel. Several experimental surgical models consisting of porcine muscle over a polyethylene tube with a large fragment titanium locking plate and screw secured to it were constructed. In 8 separate models a screw head locked within the plate was subjected to 90 seconds of high speed burring to create debris. On 4 models no water-based lubricating gel was utilized and on the remaining 4 the surrounding soft tissues were coated in the water-based lubricating gel (AQUAGEL, Halliburton – 42g £1.98). All models were then irrigated with NaCl 500mls using a 20mlsl syringe under manual pressure. Images were then captured after irrigation. The amount of debris was quantified by processing with ImageJ (a public domain, Java-based image processing program developed at the National Institutes of Health and is a computer automated program for counting particles.) The results were then statistically analysed using a student t test (IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.).Introduction:
Materials & Methods:
Reconstruction of severe acetabular defects during revision hip arthroplasty presents a significant surgical challenge. Such defects are associated with significant loss of host bone stock, which must be addressed in order to achieve stable implant fixation. A number of imaging techniques including CT scanning with 3D image reconstruction are available to assist the surgeon in the pre-operative planning of such procedures. We describe the use of a novel technique to assist the pre-operative planning of severe acetabular defects during revision hip arthroplasty. Patient and Methods – We present the use of this technique in the case of a 78 year old patient who presented 20 years from index procedure with severe hip pain and inability to weight bear due aseptic loosening of a previously revised total hip arthroplasty. A Paprosky 3B defect was noted with intra-pelvic migration of the acetabular component. Pre-operative investigations included: inflammatory markers, pelvic CT scan with 3D reconstruction, pelvic angiography and hip aspiration. Using DICOM images obtained from the CT scan, we used free open source software to carry out a 3D surface render of the bony pelvis. This was processed and converted to a suitable format for 3D printing. Using selective laser sintering, a physical 3D model of the pelvis, acetabular component and proximal femur were produced. Using this model the surgeon was able to gain an accurate representation of both the position of the intra-pelvic cup and more accurately assess the loss of bone stock. This novel technique is particularly useful in the pre-operative planning of such complex acetabular defects in order to determine if/which reconstruction technique is most likely to be successful. 3D printing is a relatively recent technology, which has numerous potential clinical applications. This is the first reported case of this technology being used to assess acetabular defects during revision hip arthroplasty. The use of this technology gives the surgeon a 3D model of the pelvis, quickly (7 days from CT) and at a tenth of the cost (£280) of producing such a model through the traditional commercial routes. The model allowed the surgeon to size potential implant, quantify the amount of bone graft required (if applicable) and to more accurately classify the loss of acetabular bone stock.
3D printing an additive manufacturing technique, allowing for rapid prototyping in many industries. To date, medical applications have generally been within a research or industry environment, as the costs (expertise, software and equipment) have been prohibitive. We have established a means by which 3D printing of bones can be achieved quickly, cost-effectively and accurately from standard computer tomography (CT) digital imaging and communications in medicine (DICOM) data. CT DICOM data of a malunited forearm fracture were manipulated using open-source software (no cost) and a 3D model was produced by selective-laser-sintering. The entire process took 7 days (total cost £77). This process and the resultant model were then assessed for overall accuracy. This sequential methodology provides ready and economical access to a technology that is valuable for preoperative templating/rehearsal in complex 3D reconstructive cases.
Rapid prototyping (RP), especially useful in surgical specialities involving critical three-dimensional relationships, has recently become cheaper to access both in terms of file processing and commercially available printing resources. One potential problem has been the accuracy of models generated. We performed computed tomography on a cadaveric human patella followed by data conversion using open source software through to selective-laser-sintering of a polyamide model, to allow comparative morphometric measurements (bone No significant differences in the dimensional measurements could be demonstrated. These data provide us with optimism as to the accuracy of the technology, and the feasibility of using RP cheaply to generate appropriate models for operative rehearsal of intricate orthopaedic procedures.
To study intra- and inter-observer variability with the use of the ultra-sound transducer and percutaneous digitiser point probes To assess the learning curve with the use of the ultrasound transducer probe As part of a larger cadaver study evaluating navigated total hip replacement via the posterior approach, we assessed data relating to acquisition of bony landmarks of the Anterior Pelvic Plane (APP) by four surgeons with an ultrasound transducer and a percutaneous point probe. The surgeons had differing levels of experience with hip surgery in general, and also with surgical navigation per se, but none of them had previously used the ultrasound probe for the specific purpose of landmark acquisition. Without fixing an absolute positional value for any of the bony landmarks, the points registered for individual landmarks by each surgeon were then studied, looking at the three-dimensional spread of these points relative to each other about the mean value. The data from all four surgeons were analysed, looking at the global dispersion of points acquired by the ultrasound and percutaneous point digitiser probes. Our results show that with the exception of a few isolated outliers, the ultrasound probe generated values fell within a +/− 10 mm range. For all four surgeons, the global spread of ultrasound-registered points was noted to be less than that acquired by percutaneous point probe acquisition. Of interest was the finding that points registered by individual surgeons using the ultrasound probe tended to be grouped distinctly together but spatially separate from those of the other surgeons; it would appear that each operator was “homing” in on what he perceived to be the bony landmark in question on the projected ultrasound image. With the percutaneous pointer probe, and with the anterior superior iliac spines as the target, there was closer grouping of points around the mean positional value for the two surgeons who were experienced with its use. However, at the symphysis pubis, the spread of points for these surgeons were not much different from the other two less experienced one, with these points showing a global spread as great as 25 mm. Regardless of the experience of the surgeon, the use of the ultrasound transducer probe appears to be more accurate than percutaneous pointer probe for acquisition of the bony landmarks that constitute the anterior pelvic plane. The learning curve associated with its use is seemingly short and steep. Its accuracy is limited by the fact that the identification of the bony land marks on the on-screen display is open to interpretation by the individual. Methods to standardise the identification of these landmarks on ultrasound images may help improve its accuracy in the future.