header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 123 - 123
1 May 2012
Nguyen H Morgan D Forwood M
Full Access

A radiation sterilisation dose (RSD) of 25 kGy is commonly recommended for sterilisation of allograft bone. However, the mechanical and biological performance of allograft bone is gamma dose-dependent. Therefore, this study aimed to apply Method 1 – ISO 11137–2: 2006 to establish a low RSD for frozen bone allografts. Two groups of allograft bones were used: 110 femoral heads (FH) and 130 structural and morselized bones (SMB).

The method included the following stages: bioburden determination using 10 FHs and 30 SMBs; verification dose selection using table six in the ISO standard and bioburden; the verification dose was used to irradiate 100 samples from each group; then irradiated bone segments were tested for sterility. The criterion for accepting the RSD as valid is that there must be no more than two non-sterile samples out of 100. The radiation sterilisation dose is then established based on table five, ISO 11137– 2: 2006.

The bioburden of both types of frozen allograft was zero. The verification dose chosen was 1.3 kGy. Two hundred bone segments were irradiated at 1.3 kGy. The average delivery gamma dose was 1.23 kGy (with minimum dose of 1.05 kGy maximum dose of 1.41kGy), which is acceptable according to the ISO standard. Sterility tests achieved 100% sterility. Accordingly, 11 kGy was established as a valid RSD for those frozen bone allografts. A reduction in the RSD from 25 kGy to 11 kGy will significantly improve bone allograft mechanical and biological performance because our data show that this dose level improves the mechanical toughness and osteoclast activity of the allograft by more than 10 and 100 percent, respectively, compared with bone allografts irradiated at 25 kGy.

A low RSD of 11 kGy was established for allograft bones manufactured at Queensland Bone Bank by applying dose validation method 1 (ISO 11137.2-2006) that is internationally accepted.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 125 - 125
1 May 2012
Nguyen H Gineyts E Wu A Cassady A Bennett M Morgan D Delmas P Forwood M
Full Access

It is not known if the radiation sterilisation dose (RSD) of 25 kGy affects mechanical properties and biocompability of allograft bone by alteration of collagen triple helix or cross-links. Our aim was to investigate the mechanical and biological performance, cross-links and degraded collagen content of irradiated bone allografts.

Human femoral shafts were sectioned into cortical bone beams (40 × 4 × 2 mm) and irradiated at 0, 5, 10, 15, 20, and 25 kGy for three-point bending tests. Corresponding cortical bone slices were used for in vitro determination of macrophage activation, osteoblast proliferation and attachment, and osteoclast formation and fusion. Subsequently, irradiated cortical bone samples were hydrolised for determination of pyridinoline (PYD), deoxypyridinoline (DPD), and pentosidine (PEN) by high performance liquid chromatography (HPLC) and collagen degradation by the alpha chymotrypsin (ïjCT) method.

Irradiation up to 25 kGy did not affect the elastic properties of cortical bone, but the modulus of toughness was decreased from 87% to 74% of controls when the gamma dose increased from 15 to 25 kGy. Macrophages activation, the proliferation and attachment of osteoblasts on irradiated bone was not affected. Osteoclast formation and fusion were less than 40% of controls when cultured on bone irradiated at 25 kGy, and 80% at 15 kGy. Increasing radiation dose did not significantly alter the content of PYR, DPD or PEN but increased the content of denatured collagen.

Cortical allografts fragility increases at doses above 15 kGy. Decreased osteoclast viability at these doses suggests a reduction in the capacity for bone remodelling. These changes were not correlated with alterations in collagen cross-links but in degradation to the collagen secondary structure as evidenced by increased content of denatured collagen.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 234 - 234
1 Nov 2002
Fazzalari N Kuliwaba J Manthey B Forwood M
Full Access

The presence of microdamage in bone and its targeted repair by activating bone remodelling has been controversial partly because it is difficult to locate and difficult to quantify. A number of studies have now validated techniques to locate and quantify microdamage and microdamage repair in human cortical and trabecular bone samples. The purpose of this study is to determine if microcracks accumulate in the cancellous bone of the intertrochanteric region of the proximal femoral shaft and influence the strength of bone. We have used en bloc basic fuchsin staining to identify in vivo microcracks in 70 micron sections. Trabecular bone was sampled in 33 patients undergoing total hip replacement for primary osteoarthritis. The study sample had a median age of 73 years and included 18 women (aged 49 to 84 years) and 15 men (aged 45 to 85 years). Histomorphometry was used to quantify the number of cracks in each case. In a selection of 12 cases the bone sample was also biomechanically tested to determine the cancellous bone strength. We found that microcracks accumulate with age, particularly after the age of about 60 years. This indicates that the bone from the elderly is more susceptible to fatigue damage than bone from the young. In addition, an increased number of microcracks in the cancellous bone significantly reduced the ultimate failure stress of the bone. Bone screws or pins placed in cortical or trabecular bone create microdamage adjacent to an implant, and the area in which this microdamage occurs is the same as that which subsequently remodels. Microdamage may be the result primarily of procedures during prosthetic implantation, but bone screws or pins can create stress concentrations that can be sites for initiation of new cracks. Therefore, if bone remodelling targets bone microdamage for repair then accumulation of microdamage around prosthetic implants may be responsible for the biologic responses which lead to implant loosening. This phenomenon is understudied in orthopaedic research and is an area requiring further investigation.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 235 - 235
1 Nov 2002
Kuliwaba J Findlay D Atkins G Forwood M Fazzalari N
Full Access

The cellular and molecular mechanisms that lead to particular trabecular structures in healthy bone and in skeletal disease, such as osteoarthritis (OA), are poorly understood. Osteoclast differentiation factor (ODF) is a newly described regulator of osteoclast formation and function, whose activity appears to be a balance between interaction with its receptor, RANK, and with an antagonist binding protein, osteoprotegerin (OPG). We have examined the relationship between the expression of ODF, RANK and OPG mRNA, and parameters of bone structure and turnover, in human trabecular bone. Intertrochanteric trabecular bone was sampled from patients with primary hip OA (n=13; median age 66 years) and controls taken at autopsy (n=12; median age 68.5 years), processed for histomorphometric analysis and RNA isolated for RT-PCR analysis of ODF, RANK and OPG mRNA expression. The ratios of ODF/OPG and ODF/RANK mRNA are significantly lower in OA (1.78±0.98; 0.59±0.31) compared to the controls (3.41±1.94, p< 0.02; 2.53±1.5, p< 0.001). This suggests that in OA there is less ODF mRNA available per unit RANK mRNA, and that osteoclast formation may be reduced. Furthermore, eroded bone surface (ES/BS[%]) was significantly lower (p< 0.05) in the OA group (6.37±3.17) compared to controls (9.74±4.53). Stong associations were found between the ratio of ODF/OPG mRNA and bone volume (ODF/OPG vs BV/TV[%], r=−0.67; p0.05) and bone turnover (ODF/OPG vs ES/BS, r=0.93; p< 0.001; ODF/OPG vs osteoid surgace (OS/BS[%], r=0.80; p< 0.001) in controls. In contrast to controls, these relationships were not evident in the OA group, suggesting that bone turnover maybe regulated differently in this disease.