header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 35 - 35
1 Mar 2021
Montalbano G Molino G Niclot F De Maria C Vozzi G Belmonte M Licini C Ciapetti G Borciani G Fiorilli S Brovarone C
Full Access

Bone tissue engineering is a promising strategy to treat the huge number of bone fractures caused by progressive population ageing and diseases i.e., osteoporosis. The bioactive and biomimetic materials design modulating cell behaviour can support healthy bone tissue regeneration. In this frame, type I collagen and hydroxyapatite (HA) have been often combined to produce biomimetic scaffolds. In addition, mesoporous bioactive glasses (MBGs) are known for their ability to promote the deposition of HA nanocrystals and their potential to incorporate and release therapeutic ions. Furthermore, the use of 3D printing technologies enables the effective design of scaffolds reproducing the natural bone architecture.

This study aims to design biomimetic and bioactive 3D printed scaffolds that mimic healthy bone tissue natural features in terms of chemical composition, topography and biochemical cues. Optimised collagenous hybrid systems will be processed by means of extrusion 3D printing technologies to obtain high resolution bone-like structures. Protocols of human co-cultures of osteoblasts and osteoclasts will be developed and used to test the 3D scaffolds.

Type I collagen has been combined with rod-like nano-HA and strontium containing MBGs (micro- and nano-sized particles) in order to obtain hybrid systems resembling the composition of native bone tissue. A comprehensive rheological study has been performed to investigate the potential use of the hybrid systems as biomaterial inks. Mesh-like structures have been obtained by means of extrusion-based technologies exploiting the freeform reversible embedding of suspended hydrogels (FRESH) approach. Different crosslinking methods have been tested to improve final constructs mechanical properties. Both crosslinked and non-crosslinked biomaterials were cultured with human osteoblasts and osteoclasts to assay the hybrid matrix biocompatibility as well as its influence on cell behaviour.

Homogeneous hybrid systems have been successfully developed and characterised, proving their suitability as biomaterial inks for 3D printing technologies. Mesh-like structures have been extruded in a thermo-reversible gelatine slurry, exploiting the sol-gel transition of the systems under physiological conditions. Covalent bonds between collagen molecules have been promoted by genipin treatment, leading to a significant increase in matrix strength and stability. The collagen methacrylation and the further UV-crosslinking are under investigation as alternative promising method to reinforce the 3D structure during the printing process. Biological tests showed the potential of the developed systems especially for genipin treated samples, with a significant adhesion of primary cells.

Collagenous hybrid systems proved their suitability for bioactive 3D printed structures design for bone tissue engineering. The multiple stimuli provided by the scaffold composition and structure will be investigated on both direct and indirect human osteoblasts and osteoclasts co-culture, according to the developed protocols.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 41 - 41
1 Mar 2021
Pontremoli C Berkmann JC Martin AXH Ellinghaus A Schmidt-Bleek O Laurano R Boffito M Turo CT Schmidt-Bleek K Duda GN Fiorilli S Brovarone CV
Full Access

Mesoporous bioactive glasses (MBGs) have been widely studied as bone regeneration systems, due to their bioactivity and ability to store and release therapeutic agents with specific biological functions. The incorporation of these nanomaterials into a thermosensitive hydrogel (TSH), in which a solution undergoes a sol-gel transition under physiological conditions, represents a promising approach to design multifunctional devices able to deliver selected molecules to pathological sites. In fact, this system can perfectly fit the defect cavity shape prior to the complete gelation, and acts as a carrier for therapeutic agents prolonged release in situ. This challenging concept is the underlying idea of the MOZART project, whose objective was to develop a library of MBGs containing different therapeutic ions and drugs, to be used as a new, smart platform technology for highly targeted therapies to enhance bone healing. The aim of this work is to investigate the bone regeneration potential of MBGs containing strontium ions (pro-osteogenic) and incorporated into thermosensitive poly(etherurethane)(PEU) based on Poloxamer407. In order to further increase the pro-osteogenic response, MBGs were also loaded with N-acetylcysteine (NAC).

MBGs containing 2%mol of Sr2+ were prepared by an aerosol-assisted spray-drying method and NAC was loaded post-synthesis via an incipient wetness method. The PEU hydrogel (SHP407) was synthesized via a two-step procedure in nitrogen atmosphere. Particles were characterized (FE-SEM, N2 adsorption-desorption analysis, TGA, DSC, FT-IR and XRD) and then incorporated into the hydrogel. The hybrid systems rheological properties and stability in aqueous environment at 37°C, and its ability to co-release Sr2+ and NAC were analysed. After preliminary biological in vitro tests, a proof-of-concept rodent study was run to assess the ability of the resulting formulation as bone healing device. X-ray at 2 and 4-weeks post-surgery and µCT-analysis were used to evaluate the healing results in a rat osteotomy model of biologically impaired healing. Then, bones were processed for histological evaluation.

Preliminary in vivo results demonstrated that incorporation of MBGs into a TSH is a promising strategy to design a multifunctional injectable formulation for in situ and sustained delivery of pro-osteogenic species enhancing bone regeneration.