The Tour de France, commonly recognised and the hardest physical endurance event on the planet, is an iconic cycling competition with a history of ever impressive performances and increasingly notable injuries. This study aims to methodologically catalogue and analyse injuries sustained by professional riders over a span of six years and understand the operative workload created by this prestigious race. (2018–2023). Data was gathered from multiple publicly available sources, including pro-cycling stats, news articles, team press releases and independent medical reports. Each injury was categorized by year, rider, and injury type.Introduction
Methods
Pin-site infection remains a significant problem for patients treated by external fixation. A randomized trial was undertaken to compare the weekly use of alcoholic chlorhexidine (CHX) for pin-site care with an emollient skin preparation in patients with a tibial fracture treated with a circular frame. Patients were randomized to use either 0.5% CHX or Dermol (DML) 500 emollient pin-site care. A skin biopsy was taken from the tibia during surgery to measure the dermal and epidermal thickness and capillary, macrophage, and T-cell counts per high-powered field. The pH and hydration of the skin were measured preoperatively, at follow-up, and if pin-site infection occurred. Pin-site infection was defined using a validated clinical system.Aims
Methods
In order to address high failure rates following rotator cuff repairs, a greater understanding is required of the underlying structural changes so that treatments can be appropriately targeted and biomarkers of failure can be identified. As collagen is the primary constituent of tendon and determines force transmission, collagen structural changes may affect responses to loading. For example changes in collagen 1 and 5 are associated with the hyperelastic Ehlers-Danlos syndrome, which is diagnosed by looking for pathopneumonic altered collagen fibres or ‘collagen flowers’ in skin using transmission electron microscopy (TEM). To date no study has been performed on the microstructure of torn human rotator cuff tendons using TEM. It was hypothesized that normal, small and massive human rotator cuff tendons tears will have altered microscopic structures. The unique study aimed to use TEM to compare the ultrastructure of small and massive rotator cuff tears, to normal rotator cuff tendons. Samples from 7 human rotator cuff tendons repairs were obtained, including 4 massive (>5 cm) and 3 small (< 1 cm) tears, and 3 matched normal controls with no history of connective tissue disorders. Specimens were fixed in 4% glutaraldehyde in 0.1M phosphate buffer, processed and examined blind using routine TEM examination. To assess whether changes in the relative expression of collagen 1 and 5 (COL1A1, COL5A1 and COL5A2) occurred in all tears, qPCR was performed on another 6 phenotypically matched patients.INTRODUCTION
METHODS