Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 38 - 38
23 Feb 2023
Ernstbrunner L Almond M Rupasinghe H Jo O Zbeda R Ackland D Ek E
Full Access

The extracortical single-button (SB) inlay repair is one of the most preferred distal biceps tendon repair techniques. However, specific complications such as neurovascular injury and non-anatomic repairs have led to the development of techniques that utilize intracortical double-button (DB) fixation.

To compare the biomechanical stability of the extracortical SB repair with the anatomical DB repair technique.

Controlled laboratory study.

The distal biceps tendon was transected in 18 cadaveric elbows from 9 donors. One elbow of each donor was randomly assigned to the extracortical SBor anatomical DB group. Both groups were cyclically loaded with 60N over 1000 cycles between 90° of flexion and full extension. The elbow was then fixed in 90° of flexion and the repair construct loaded to failure. Gap-formation and construct stiffness during cyclic loading, and ultimate load to failure was analysed.

After 1000 cycles, the anatomical DB technique compared with the extracortical SB technique showed significantly less gap-formation (mean difference 1.2 mm; p=0.017) and significantly more construct stiffness (mean difference 31 N/mm; p=0.023). Ultimate load to failure was not significantly different comparing both groups (SB, 277 N ±92 vs. DB, 285 N ±135; p=0.859). The failure mode in the anatomical DB group was significantly different compared with the extracortical SB technique (p=0.002) and was due to fracture avulsion of the BicepsButton in 7 out of 9 specimens (vs. none in SB group).

Our study shows that the intracortical DB technique produces equivalent or superior biomechanical performance to the SB technique. The DB repair technique reduces the risk of nerve injury and better restores the anatomical footprint of biceps tendon. The DB technique may offer a clinically viable alternative to the SB repair technique.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 39 - 39
23 Feb 2023
Jo O Almond M Rupasinghe H Jo O Ackland D Ernstbrunner L Ek E
Full Access

Neer Type-IIB lateral clavicle fractures are inherently unstable fractures with associated disruption of the coracoclavicular (CC) ligaments. A novel plating technique using a superior lateral locking plate with antero-posterior (AP) locking screws, resulting in orthogonal fixation in the lateral fragment has been designed to enhance stability. The purpose of this study was to biomechanically compare three different clavicle plating constructs.

24 fresh-frozen cadaveric shoulders were randomised into three groups (n=8 specimens). Group 1: lateral locking plate only (Medartis Aptus Superior Lateral Plate); Group 2: lateral locking plate with CC stabilisation (Nr. 2 FiberWire); and Group 3: lateral locking plate with two AP locking screws stabilising the lateral fragment. Data was analysed for gap formation after cyclic loading, construct stiffness and ultimate load to failure, defined by a marked decrease in the load displacement curve.

After 500 cycles, there was no statistically significant difference between the three groups in gap-formation (p = 0.179). Ultimate load to failure was significantly higher in Group 3 compared to Group 1 (286N vs. 167N; p = 0.022), but not to Group 2 (286N vs. 246N; p = 0.604). There were no statistically significant differences in stiffness (Group 1: 504N/mm; Group 2: 564N/mm; Group 3: 512N/mm; p = 0.712). Peri-implant fracture was the primary mode of failure for all three groups, with Group 3 demonstrating the lowest rate of peri-implant fractures (Group 1: 6/8; Group 2: 7/8, Group 3: 4/8; p = 0.243).

The lateral locking plate with orthogonal AP locking screw fixation in the lateral fragment demonstrated the greatest ultimate failure load, followed by the lateral locking plate with CC stabilization. The use of orthogonal screw fixation in the distal fragment may negate against the need for CC stabilization in these types of fractures, thus minimizing surgical dissection around the coracoid and potential complications.


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1600 - 1608
1 Dec 2018
Bouaicha S Ernstbrunner L Jud L Meyer DC Snedeker JG Bachmann E

Aims

In patients with a rotator cuff tear, tear pattern and tendon involvement are known risk factors for the development of pseudoparalysis of the shoulder. It remains unclear, however, why similar tears often have very different functional consequences. The present study hypothesizes that individual shoulder anatomy, specifically the moment arms (MAs) of the rotator cuff (RC) and the deltoid muscle, as well as their relative recruitment during shoulder abduction, plays a central role in pseudoparalysis.

Materials and Methods

Biomechanical and clinical analyses of the pseudoparalytic shoulder were conducted based on the ratio of the RC/deltoid MAs, which were used to define a novel anatomical descriptor called the Shoulder Abduction Moment (SAM) index. The SAM index is the ratio of the radii of two concentric spheres based on the centre of rotation of the joint. One sphere captures the humeral head (numerator) and the other the deltoid origin of the acromion (denominator). A computational rigid body simulation was used to establish the functional link between the SAM index and a potential predisposition for pseudoparalysis. A retrospective radiological validation study based on these measures was also undertaken using two cohorts with and without pseudoparalysis and massive RC tears.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 67 - 67
1 Nov 2018
Bouaicha S Ernstbrunner L Jud L Meyer D Snedeker J Bachmann E
Full Access

Tear pattern and tendon involvement are risk factors for the development of a pseudoparalytic shoulder. However, some patients have similar tendon involvement but significantly different active forward flexion. In these cases, it remains unclear why some patients suffer from pseudoparalysis and others with the same tear pattern show good active range of motion. Moment arms (MA) and force vectors of the RC and the deltoid muscle play an important role in the muscular equilibrium to stabilize the glenohumeral joint. Biomechanical and clinical analyses were conducted calculating different MA-ratios of the RC and the deltoid muscle using computer rigid body simulation and a retrospective radiographic investigation of two cohorts with and without pseudoparalysis and massive RC tears. Idealized MAs were represented by two spheres concentric to the joints centre of rotation either spanning to the humeral head or deltoid origin of the acromion. Individual ratios of the RC /deltoid MAs on antero-posterior radiographs using the newly introduced Shoulder Abduction Moment (SAM) Index was compared between the pseudoparalytic and non-pseudoparalytic patients.

Decrease of RC activity and improved glenohumeral stability (+14%) was found in simulations for MA ratios with larger diameters of the humeral head which also were consequently beneficial for the (remaining) RC. Clinical investigation of the MA-ratio showed significant risk of having pseudoparalysis in patients with massive tears and a SAM Index <0.77 (OR=11). The SAM index, representing individual biomechanical characteristics of shoulder morphology has an impact on the presence or absence of pseudoparalysis in shoulders with massive RC tears.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 453 - 460
1 Oct 2016
Ernstbrunner L Werthel J Hatta T Thoreson AR Resch H An K Moroder P

Objectives

The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers in vivo. We aimed to biomechanically validate the BSSR, determine whether joint incongruence affects the stability ratio (SR) of a shoulder model, and determine the correct parameters (glenoid concavity versus humeral head radius) for calculation of the BSSR in vivo.

Methods

Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius.