Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 67 - 67
2 Jan 2024
Isaksson H Pierantoni M Barreto I Hammerman M Eliasson P
Full Access

Achilles tendon mechanical properties depend on a complex hierarchical design, with collagen being the smallest load-bearing unit. At the nanoscale, collagen molecules are organized into fibrils, which at the microscale are assembled into fibers, followed by larger structures such as sub-tendons or fascicles. Degree of in vivo loading affects the collagen content, and organization and consequently the tissue's mechanical response. We aim to unravel how composition, structural organization, and mechanical response are affected by degree of in vivo loading at each length scale. The presentation will outline the results to date about to the use of high-resolution synchrotron-based tissue characterisation methods on several length scales in combination with in situ mechanical tests. We use a rat model, where the tendons are subjected to varying loading in vivo. To characterize the tissue microstructure, phase-contrast enhanced synchrotron micro-tomography is performed. The 3D fiber organization in fully loaded tendons is highly aligned, whereas the fibers in unloaded tendons are significantly more heterogeneously arranged and crimped. To characterize the collagen fibril response, Small Angle X-ray Scattering is performed. Two types of fibril organizations are found; a single population oriented towards the main load direction and two fibril subpopulations with clearly distinct orientations. Scattering during loading showed that the fibrils in unloaded tendons did not strain as much in fully loaded. In situ loading concurrently with high resolution synchrotron experiments show the complex tendon response to in situ load and its relation to in vivo loading and tendon hierarchical structure. Unloading seems to alter the organization of the fibrils and fibers, e.g. increased crimping and more pronounced sub-tendon twists.

Acknowledgements: Funding from Knut and Alice Wallenberg Foundation and European Research Council (101002516). Paul Scherrer Institut, Switzerland for beamtime at cSAXS and TOMCAT.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 5 - 5
1 Oct 2015
Eliasson P Couppé C Lonsdale M Svensson R Neergaard C Kjaer M Friberg L Magnusson S
Full Access

Introduction

The healing of Achilles tendon rupture is slow and jogging is usually allowed already 6 months after injury. However, the metabolic status of the healing tendon is largely unknown at the time-points when increased loading is allowed. The purpose of this study was to investigate tendon metabolic response and blood flow at 3, 6 and 12 months after Achilles tendon rupture by positron emission tomography (PET) and ultrasound-Power Doppler (UPD).

Materials and Methods

23 patients that had surgical repair of a total Achilles tendon rupture (3 (n=7), 6 (n=7) or 12 (n=9) months earlier) participated in the study. The triceps surae complex was loaded during 20 min of slow treadmill walking. A radioactive tracer (FDG) was administered during this walking and glucose uptake was measured bilaterally by the use of PET. Blood flow was recorded by UPD and patient reported outcome scored by Achilles tendon rupture score (ATRS) and VISA-A. Non-parametric statistics were used for statistical analysis.