Computer-assisted hip navigation offers the potential for more accurate placement of hip components, which is important in avoiding dislocation, impingement, and edge-loading. The purpose of this study was to determine if the use of computer-assisted hip navigation reduced the rate of dislocation in patients undergoing revision THA. We retrospectively reviewed 72 patients who underwent computer-navigated revision THA [Fig. 1] between January 2015 and December 2016. Demographic variables, indication for revision, type of procedure, and postoperative complications were collected for all patients. Clinical follow-up was performed at 3 months, 1 year, and 2 years. Dislocations were defined as any episode that required closed or open reduction or a revision arthroplasty. Data are presented as percentages and was analyzed using appropriate comparative statistical tests (z-tests and independent samples t- tests).Introduction
Methods and Materials
The purpose of this study was to compare pre-operative acetabular cup parameters using this novel dynamic imaging sequence to the Lewinnek safe zone We retrospectively reviewed 350 consecutive primary THAs that underwent dynamic pre-operative acetabular cup planning utilizing a pre-operative CT scan to capture the individual's hip anatomy, followed by standing (posterior pelvic tilt), sitting (anterior pelvic tilt), and supine X-rays. Using these inputs, we modeled an optimal cup position for each patient. Radiographic parameters including inclination, anteversion, pelvic tilt, pelvic incidence, and lumbar flexion were analyzed.Introduction
Methods
Venous thromboembolism (VTE) is a common, costly, and morbid complication following TJA. Consequently, the current standard of care recommends that all TJA candidates receive some form of thromboprophylaxis postoperatively. Chemoprophylaxis, however, is not without its own risks and has been associated with greater risk of perioperative complications such as major bleeding, infection, stroke, and increased wound drainage. Mechanical compression devices serve as an alternative to chemoprophylaxis. Compression devices are thought to function by decreasing venous stasis and activating fibrinolysis. Intermittent pneumatic compression devices (IPCD) function by providing pressure at a constant cycle; whereas continuous enhanced circulation therapy (CECT) devices such as ActiveCare portable system (Medical Compression Systems, Or Akiva, Israel) function in a synchronized manner with the patient's own respiratory cycles. While both of these systems are widely utilized, there is scarce data comparing their effectiveness as thromboprophylatic agents following TJA. The purpose of this meta-analysis is to comparatively evaluate the efficacy of ActiveCare to IPCDs in the prevention of thromboembolic events following TJA. A literature search using PubMed, Cochrane, and EMBASE databases were used to identify all articles published between January 2000 and August 2016. Key words used to conduct the search were venous foot pump, intermittent pneumatic compression, total hip arthroplasty/replacement, total knee arthroplasty/replacement, deep vein thrombosis, thromboembolic disease and pulmonary emboli. Two independent investigators carried out the literature review using the PRISMA guidelines (Figure 1). Analysis of risk ratio was performed by evaluation of studies which compared IPCD with any control chemoprophylaxis regiment or ActiveCare with any control chemoprophlaxis regiment. Assessment of heterogeneity and analysis of data were operated by Review Manager 5.3.Background
Methods