header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 24 - 24
1 Jan 2019
Farzi M Pozo JM McCloskey E Eastell R Frangi AF Wilkinson JM
Full Access

Ageing is associated with a gradual and progressive bone loss, which predisposes to osteoporosis. Given the close relationship between the involutional bone loss and the underlying mechanism of osteoporosis, improving the understanding of the bone ageing process can lead to enhanced preventive and therapeutic strategies for osteoporosis. To facilitate this understanding, we develop a spatio-temporal atlas of ageing bone in the femur.

We applied our method to a cohort of 11,576 Caucasian women (20–97 years). We amalgamated data from three different studies: 5095 women from the UK Biobank study, 1609 women from the OPUS study, and 5112 women from the MRC-Hip study. The scans are collected using either a Hologic QDR 4500A (Waltham, MA), a Lunar GE iDXA (Madison, WI), or a Lunar GE Prodigy (Madison, WI). Pixel BMD maps were exported using APEX v3.2 and Encore v16 for scans collected on Hologic Inc. and Lunar Corp., respectively. The method utilises a thin plate spline (TPS) registration to warp each scan to a reference mean shape. This image warping, termed Region Free Analysis (RFA), aims to eliminate morphological variation and establish a correspondence between pixel coordinates. At each pixel coordinate, the BMD evolution with ageing was modelled using smooth quantile curves. We deployed the R-package ‘VGAM’ to fit the smooth quantile curves.

Cortical thinning was observed consistently with ageing around the shaft from the 60th onwards. A widespread bone loss was also observed in the trochanteric area. Quantile regression curves demonstrated different rates of bone loss at different anatomic locations. For example, bone loss was observed consistently in the mid-femoral neck, while bone mass was preserved the most in the inferior cortex. The developed atlas provides new insights into the spatial bone loss patterns, for which the conventional DXA analysis is insensitive.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 75 - 75
1 Jul 2014
Farinella G Viceconti M Schileo E Falcinelli C Yang L Eastell R
Full Access

Summary

A retrospective study on 98 patients shows that FE-based bone strength from CT data (using validated FE models) is a suitable candidate to discriminate fractured versus controls within a clinical cohort.

Introduction

Subject-specific Finite element models (FEM) from CT data are a promising tool to non-invasively assess the bone strength and the risk of fracture of bones in vivo in individual patients. The current clinical indicators, based on the epidemiological models like the FRAX tool, give limitation estimation of the risk of femoral neck fracture and they do not account for the mechanical determinants of the fracture. Aim of the present study is to prove the better predictive accuracy of individualised computer models based a CT-FEM protocol, with the accuracy of a widely used standard of care, the FRAX risk indicator.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 283 - 288
1 Mar 2001
Wilkinson JM Peel NFA Elson RA Stockley I Eastell R

We aimed to evaluate the precision and longitudinal sensitivity of measurement of bone mineral density (BMD) in the pelvis and to determine the effect of bone cement on the measurement of BMD in femoral regions of interest (ROI) after total hip arthroplasty (THA).

A series of 29 patients had duplicate dual-energy x-ray absorptiometry (DXA) scans of the hip within 13 months of THA. Pelvic analyses using 3- and 4-ROI models gave a coefficient of variation (CV) of 2.5% to 3.6% and of 2.5% to 4.8%, respectively. Repeat scans in 17 subjects one year later showed a significant change in BMD in three regions using the 4-ROI model, compared with change in only one region with the 3-ROI model (p < 0.05).

Manual exclusion of cement from femoral ROIs increased the net CV from 1.6% to 3.6% (p = 0.001), and decreased the measured BMD by 20% (t = 12.1, p < 0.001). Studies of two cement phantoms in vitro showed a small downward drift in bone cement BMD giving a measurement error of less than 0.03 g/cm2/year associated with inclusion of cement in femoral ROIs.

Changes in pelvic periprosthetic BMD are best detected using a 4-ROI model. Analysis of femoral ROI is more precise without exclusion of cement although an awareness of its effect on the measurement of the BMD is needed.