The clinical translation of regenerative therapies, whether in the form of mesenchymal cells, macromolecules or small molecules, is hampered by several factors: the poor retention and short biological half-life of the therapeutic agent, the adverse side effects from systemic delivery, and difficulties with the administration of multiple doses to a target site. We report the development and application of a therapeutic reservoir device that enables sustained and repeated administration of small molecules, macromolecules and cells directly to organs and tissues of interest via a polymer-based reservoir connected to a subcutaneous port. In a myocardial infarct rodent model, we show that repeated administration of cells over a four-week period using the reservoir provided functional compared to a single injection of cells and to no treatment. Recent advances of the system include a multi-port and multi-reservoir system that can be tailored to cargo and application need. The pre-clinical use of our therapeutic reservoir as a research model may enable insights into regenerative orthopaedic therapy, particularly those therapies that require multi-dose approaches.
Autogenous bone grafting limitations have motivated the development of Tissue-Engineered (TE) biomaterials that offer an alternative as bone void fillers. However, the lack of a blood supply within implanted constructs may result in avascular necrosis and construct failure1. The aim of this project was to investigate the potential of novel TE constructs to promote vascularisation and bone defect repair using two distinct approaches. In Study 1, we investigated the potential of a mesenchymal stem cell (MSC) and endothelial cell (EC) co-culture to stimulate pre-vascularisation of biomaterials prior to in vivo implantation2. In Study 2, we investigated the potential of TE hypertrophic cartilage to promote the release of angiogenic factors such as VEGF, vascular invasion and subsequent endochondral bone formation in an in vivo model. Collagen-only (Coll), collagen-glycosaminoglycan (CG) and collagen-hydroxyapatite (CHA) scaffolds were fabricated by freeze-drying3, seeded with cells and implanted into critical-sized calvarial and femoral defects in immunocompetent rats. In Study 1, Coll and CG scaffolds were initially seeded with ECs, allowed to form capillary-like networks before the delayed addition of MSCs and continued culture prior to calvarial implantation. In Study 2, CG and CHA scaffolds were seeded with MSCs and cultured under chondrogenic and subsequent hypertrophic conditions to form a cartilage pre-cursor prior to calvarial and femoral implantation in vivo. MicroCT and histomorphometry quantification demonstrated the ability of both systems to support increased bone formation compared to controls. Moreover, the greatest levels of bone formation were observed in the CG groups, notably in those containing cartilage tissue (Study 2). Assessment of the immune response suggests the addition of MSCs promotes the polarisation of macrophages away from inflammation (M1) towards a pro-remodelling phenotype (M2). We have developed distinct collagen-based systems that promote vascularisation and ultimately enhance bone formation, confirming their potential as advanced strategies for bone repair applications.
Gene-activated scaffolds have shown potential in localised gene delivery resulting in bone tissue regeneration. In this study, the ability of two gene delivery vectors, polyethyleneimine (PEI) and nano-hydroxyapatite (nHA), to act as carriers for the delivery of therapeutic genes when combined with our collagen-nHA (coll-nHA) scaffolds to produce gene-activated scaffolds [1, 2], was determined. In addition, coll-nHA-dual gene scaffolds containing both an angiogenic gene and an osteogenic gene were assessed for bone healing in an