Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 13 - 13
1 Jul 2020
Wildeman B Bormann N Beuttel E Pobloth A Duda GN
Full Access

Despite the increasing availability of bone grafting materials, the regeneration of large bone defects remains a challenge. Especially infection prevention while fostering regeneration is a crucial issue. Therefore, loading of grafting material with antibiotics for direct delivery to the site of need is desired. This study evaluates the concept of local delivery using in vitro and in vivo investigations. We aim at verifying safety and reliability of a perioperative enrichment procedure of demineralized bone matrix (DBM) with gentamicin.

DBM (DBMputty, DIZG, Germany) was mixed with antibiotic using a syringe with an integrated mixing propeller (Medmix Systems, Switzerland). Gentamicin, as powder or solution, was mixed with DBM at different concentrations (25 −100 mg/g DBM), release and cytotoxicity was analyzed. For in vivo analysis, sterile drill hole defects (diameter: 6 mm, depth: 15 mm) were created in diaphyseal and metaphyseal bones of sheep (Pobloth et al. 2016). Defects (6 – 8 per group and time point) were filled with DBM or DBM enriched with gentamicin (50 mg/g DBM) or left untreated. After three and nine weeks, defect regeneration was analyzed by µCT and histology.

The release experiments revealed a burst release of gentamicin from DBM independent of the used amount, the sampling strategy, or the formulation (powder or solution). Gentamicin was almost completely released after three days in all set-ups. Eluates showed an antimicrobial activity against S. aureus over at least three days. Eluates had no negative effect on viability and alkaline phosphatase activity of osteoblast-like cells (partially published Bormann et al. 2014). µCT and histology of the drill hole defects revealed a reduced bone formation with gentamicin loaded DBM. After nine weeks significantly less mineralized tissue was detectable in metaphyseal defects of the gentamicin group. Histological evaluation revealed new bone formation starting at the edges of the drill holes and growing into the center over time. The amount of DBM decreased over time due to the active removal by osteoclasts while osteoblasts formed new bone.

Using this mixing procedure, loading of DBM was fast, reliable and possible during surgical setting. In vitro experiments revealed a burst and almost complete release after three days, antimicrobial activity and good biocompatibility of the eluates. Gentamicin/DBM concentration was in the range of clinically used antibiotic-loaded-cement for prophylaxis and treatment in joint replacement (Jiranek et al. 2006). The delayed healing seen in vivo was unexpected due to the good biocompatibility found in vitro. A reduced healing was also seen in spinal fusion where DBM was mixed with vancomycin (Shields et al. 2017), whereas DBM with gentamicin or DBM/bioactive glass with tobramycin had no negative effect on osteoinductivity or femur defect healing, respectively (Lewis et al. 2010, Shields et al. 2016). In conclusion, loading of DBM with gentamicin showed a proper antibiotic delivery over several days, covering the critical phase shortly after surgery. Due to the faster and complete release of the antibiotic compared to antibiotic loaded cement, the amount of antibiotic should be much lower in the DBM compared to cement.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 57 - 57
1 Feb 2016
Ehlke M Heyland M Mardian S Duda GN Zachow S
Full Access

We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on 2D X-ray images. Our goal is to study from clinical data, how the plate-to-bone distance affects bone healing. The patient-specific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilises two postoperative X-ray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for follow-up. First, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. In a second step, the patient-specific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the plate-to-bone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing.