header advert
Results 1 - 5 of 5
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 27 - 27
1 Dec 2022
Suter T Old J McRae S Woodmass J Marsh J Dubberley J MacDonald PB
Full Access

Adequate visual clarity is paramount to performing arthroscopic shoulder surgery safely, efficiently, and effectively. The addition of epinephrine in irrigation fluid, and the intravenous or local administration of tranexamic acid (TXA) have independently been reported to decrease bleeding thereby improving the surgeon's visualization during arthroscopic shoulder procedures. No study has compared the effect of systemic administered TXA, epinephrine added in the irrigation fluid or the combination of both TXA and epinephrine on visual clarity during shoulder arthroscopy with a placebo group. The purpose of this study is to determine if intravenous TXA is a safe alternative to epinephrine delivered by a pressure-controlled pump in improving arthroscopic shoulder visualization during arthroscopic procedures and whether using both TXA and epinephrine together has an additive effect in improving visualization.

The design of the study was a double-blinded, randomized controlled trial with four 1:1:1:1 parallel groups conducted at one center. Patients aged ≥18 years undergoing arthroscopic shoulder procedures including rotator cuff repair, arthroscopic biceps tenotomy/tenodesis, distal clavicle excision, subacromial decompression and labral repair by five fellowship-trained upper extremity surgeons were randomized into one of four arms: Pressure pump-controlled regular saline irrigation fluid (control), epinephrine (1ml of 1:1000) mixed in irrigation fluid (EPI), 1g intravenous TXA (TXA), and epinephrine and TXA (EPI/TXA). Visualization was rated on a 4-point Likert scale every 15 minutes with 0 indicating ‘poor’ quality and 3 indicating ‘excellent’ quality. The primary outcome measure was the unweighted mean of these ratings. Secondary outcomes included mean arterial blood pressure (MAP), surgery duration, surgery complexity, and adverse events within the first postoperative week.

One hundred and twenty-eight participants with a mean age (± SD) of 56 (± 11) years were randomized. Mean visualization quality for the control, TXA, EPI, and EPI/TXA groups were 2.1 (±0.40), 2.1 (±0.52), 2.6 (±0.37), 2.6 (±0.35), respectively. In a regression model with visual quality as the dependent variable, the presence/absence of EPI was the most significant predictor of visualization quality (R=0.525; p < 0 .001). TXA presence/absence had no effect, and there was no interaction between TXA and EPI. The addition of MAP and surgery duration strengthened the model (R=0.529; p < 0 .001). Increased MAP and surgery duration were both associated with decreased visualization quality. When surgery duration was controlled, surgery complexity was not a significant predictor of visualization quality. No adverse events were recorded in any of the groups.

Intravenous administration of TXA is not an effective alternative to epinephrine in the irrigation fluid to improve visualization during routine arthroscopic shoulder surgeries although its application is safe. There is no additional improvement in visualization when TXA is used in combination with epinephrine beyond the effect of epinephrine alone.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 5 - 5
1 Dec 2022
McRae S Suter T Old J Zhang Y Woodmass J Marsh J Dubberley J MacDonald P
Full Access

Adequate visual clarity is paramount to performing arthroscopic shoulder surgery safely, efficiently, and effectively. The addition of epinephrine in irrigation fluid, and the intravenous or local administration of tranexamic acid (TXA) have independently been reported to decrease bleeding thereby improving the surgeon's visualization during arthroscopic shoulder procedures. No study has compared the effect of systemic administered TXA, epinephrine added in the irrigation fluid or the combination of both TXA and epinephrine on visual clarity during shoulder arthroscopy with a placebo group. The purpose of this study is to determine if intravenous TXA is a safe alternative to epinephrine delivered by a pressure-controlled pump in improving arthroscopic shoulder visualization during arthroscopic procedures and whether using both TXA and epinephrine together has an additive effect in improving visualization.

The design of the study was a double-blinded, randomized controlled trial with four 1:1:1:1 parallel groups conducted at one center. Patients aged ≥18 years undergoing arthroscopic shoulder procedures including rotator cuff repair, arthroscopic biceps tenotomy/tenodesis, distal clavicle excision, subacromial decompression and labral repair by five fellowship-trained upper extremity surgeons were randomized into one of four arms: Pressure pump-controlled regular saline irrigation fluid (control), epinephrine (1ml of 1:1000) mixed in irrigation fluid (EPI), 1g intravenous TXA (TXA), and epinephrine and TXA (EPI/TXA). Visualization was rated on a 4-point Likert scale every 15 minutes with 0 indicating ‘poor’ quality and 3 indicating ‘excellent’ quality. The primary outcome measure was the unweighted mean of these ratings. Secondary outcomes included mean arterial blood pressure (MAP), surgery duration, surgery complexity, and adverse events within the first postoperative week.

One hundred and twenty-eight participants with a mean age (± SD) of 56 (± 11) years were randomized. Mean visualization quality for the control, TXA, EPI, and EPI/TXA groups were 2.1 (±0.40), 2.1 (±0.52), 2.6 (±0.37), 2.6 (±0.35), respectively. In a regression model with visual quality as the dependent variable, the presence/absence of EPI was the most significant predictor of visualization quality (R=0.525; p < 0 .001). TXA presence/absence had no effect, and there was no interaction between TXA and EPI. The addition of MAP and surgery duration strengthened the model (R=0.529; p < 0 .001). Increased MAP and surgery duration were both associated with decreased visualization quality. When surgery duration was controlled, surgery complexity was not a significant predictor of visualization quality. No adverse events were recorded in any of the groups.

Intravenous administration of TXA is not an effective alternative to epinephrine in the irrigation fluid to improve visualization during routine arthroscopic shoulder surgeries although its application is safe. There is no additional improvement in visualization when TXA is used in combination with epinephrine beyond the effect of epinephrine alone.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 32 - 32
1 Dec 2022
Kamikovski I Woodmass J McRae S Lapner P Jong B Marsh J Old J Dubberley J Stranges G MacDonald PB
Full Access

Previously, we conducted a multi-center, double-blinded randomized controlled trial comparing arthroscopic Bankart repair with and without remplissage. The end point for the randomized controlled trial was two years post-operative, providing support for the benefits of remplissage in the short term in reducing recurrent instability. The aim of this study was to compare the medium term (3 to 9 years) outcomes of patients previously randomized to have undergone isolated Bankart repair (NO REMP) or Bankart repair with remplissage (REMP) for the management of recurrent anterior glenohumeral instability. The rate of recurrent instability and instances of re-operation were examined.

The original study was a double-blinded, randomized clinical trial with two 1:1 parallel groups with recruitment undertaken between 2011 and 2017. For this medium-term study, participants were reached for a telephone follow-up in 2020 and asked a series of standardized questions regarding ensuing instances of subluxation, dislocation or reoperation that had occurred on their shoulder for which they were randomized. Descriptive statistics were generated for all variables. “Failure” was defined as occurrence of a dislocation. “Recurrent instability” was defined as the participant reporting a dislocation or two or more occurences of subluxation greater than one year post-operative. All analyses were undertaken based on intention-to-treat whereby their data was analyzed based on the group to which they were originally allocated.

One-hundred and eight participants were randomized of which 50 in the NO REMP group and 52 in the REMP group were included in the analyses in the original study. The mean number of months from surgery to final follow-up was 49.3 for the NO REMP group and 53.8 for the REMP group. The rates of re-dislocation or failure were 8% (4/52) in the REMP group at an average of 23.8 months post-operative versus 22% (11/50) in the NO REMP at an average of 16.5 months post-operative. The rates of recurrent instability were 10% (5/52) in the REMP group at an average of 24 months post-operative versus 30% (15/50) in the NO REMP group at an average of 19.5 months post-operative. Survival curves were significantly different favouring REMP in both scenarios.

Arthroscopic Bankart repair combined with remplissage is an effective procedure in the treatment of patients with an engaging Hill-Sachs lesion and minimal glenoid bone loss (<15%). Patients can expect favourable rates of recurrent instability when compared with isolated Bankart repair at medium term follw-up.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 26 - 26
1 Dec 2022
Lapner P Pollock J Hodgdon T Zhang T McIlquham K Coupal S Bouliane M McRae S Dubberley J Berdusco R Stranges G Marsh J Old J MacDonald PB
Full Access

Our primary objective was to compare healing rates in patients undergoing arthroscopic rotator cuff repair for degenerative tears, with and without bone channeling. Our secondary objectives were to compare disease-specific quality of life and patient reported outcomes as measured by the Western Ontario Rotator Cuff Index (WORC), American Shoulder and Elbow Surgeons (ASES) score and Constant score between groups.

Patients undergoing arthroscopic rotator cuff repair at three sites were randomized to receive either bone channeling augmentation or standard repair. Healing rates were determined by ultrasound at 6 and 24 months post operatively. WORC, ASES, and Constant scores were compared between groups at baseline and at 3, 6, 12 and 24 months post operatively.

One hundred sixty-eight patients were recruited and randomized between 2013 to 2018. Statistically significant improvements occurred in both groups from pre-operative to all time points in all clinical outcome scores (p < 0 .0001). Intention to treat analysis revealed no statistical differences in healing rates between the two interventions at 24 months post-operative. No differences were observed in WORC, ASES or Constant scores at any time-point.

This trial did not demonstrate superiority of intra-operative bone channeling in rotator cuff repair surgery at 24 months post-operative. Healing rates and patient-reported function and quality of life measures were similar between groups.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 33 - 33
1 Mar 2021
Woodmass J McRae S Malik S Dubberley J Marsh J Old J Stranges G Leiter J MacDonald P
Full Access

When compared to magnetic resonance imaging (MRI), ultrasound (US) performed by experienced users is an inexpensive tool that has good sensitivity and specificity for diagnosing rotator cuff (RC) tears. However, many practitioners are now utilizing in-office US with little to no formal training as an adjunct to clinical evaluation in the management of RC pathology. The purpose of our study was to determine if US without formal training is effective in managing patients with a suspected RC tear.

This was a single centre prospective observational study. Five fellowship-trained surgeons each examined 50 participants referred for a suspected RC tear (n= 250). Patients were screened prior to the consultation and were included if ≥ 40 years old, had an MRI of their affected shoulder, had failed conservative treatment of at least 6 months, and had ongoing pain and disability. Patients were excluded if they had glenohumeral instability, evidence of major joint trauma, or osteonecrosis. After routine clinical exam, surgeons recorded their treatment plan (“No Surgery”, “Uncertain”, or “Surgery”). Surgeons then performed an in-office diagnostic US followed by an MRI and documented their treatment plan after each imaging study. Interrater reliability was analyzed using a kappa statistic to compare clinical to ultrasound findings and ultrasound findings to MRI, normal and abnormal categorization of biceps, supraspinatus, and subscapularis.

Following clinical assessment, the treatment plan was recorded as “No Surgery” in 90 (36%), “Uncertain” in 96 (39%) of cases, “Surgery” in 61 (25%) cases, and incomplete in 3 (2%). In-office US allowed resolution of 68 (71%) of uncertain cases with 227 (88%) of patients having a definitive treatment plan. No patients in the “No Surgery” group had a change in treatment plan. After MRI, 16 (6%) patients in the “No Surgery” crossed-over to the “Surgery” group after identification of full-thickness tears, larger than expected tears or alternate pathology (e.g., labral tear).

The combination of clinical examination and in-office US may be an effective method in the initial management of patients with suspected rotator cuff pathology. Using this method, a definitive diagnosis and treatment plan was established in 88% of patients with the remaining 12% requiring an MRI. A small percentage (6%) of patients with larger than expected full-thickness rotator cuff tears and/or alternate glenohumeral pathology (e.g., labral tear) would be missed at initial evaluation.