There is a large variability associated with hip stem designs, patient anatomy, bone mechanical property, surgical procedure, loading, etc. Designers and orthopaedists aim at improving the performance of hip stems and reducing their sensitivity to this variability. This study focuses on the primary stability of a cementless short stem across the spectrum of patient morphology using a total of 109 femoral reconstructions, based on segmentation of patient CT scan data. A statistical approach is proposed for assessing the variability in bone shape and density [Blanc, 2012]. For each gender, a thousand new femur geometries were generated using a subset of principal components required to capture 95% of the variance in both female and male training datasets [Bah, 2013]. A computational tool (Figure 1) is then developed that automatically selects and positions the most suitable implant (distal diameter 6–17 mm, low and high offset, 126° and 133° CCD angle) to best match each CT-based 3D femur model (75 males and 34 females), following detailed measurements of key anatomical parameters. Finite Element contact models of reconstructed hips, subjected to physiologically-based boundary constraints and peak loads of walking mode [Speirs, 2007] were simulated using a coefficient of fricition of 0.4 and an interference-fit of 50μm [Abdul-Kadir, 2008]. Results showed that the maximum and average implant micromotions across the subpopulation were 100±7μm and 7±5μm with ranges [15μm, 350μm] and [1μm, 25μm], respectively. The computed percentage of implant area with micromotions greater than reported critical values of 50μm, 100μm and 150μm never exceeded 14%, 8% and 7%, respectively. To explore the possible correlations between anatomy and implant performance, response surface models for micromotion metrics were constructed using the so-called Kriging regression methodology, based on Gaussian processes. A clear nonlinear decreasing trend was revealed between implant average micromotion and the metaphyseal canal flare indexes (MCFI) measured in the medial-lateral (ML), anterio-posterior (AP) and femoral neck-oriented directions but also the average bone density in each Gruen zone. In contrast, no clear influence of the remaining clinically important parameters (neck length and offsets, femoral anteversion and CCD angle, standard canal flares, patient BMI and weight or stem size) to implant average micromotion was found. In conclusion, the present study demonstrates that the primary stability and tolerance of the short stem to variability in patient anatomy were high, suggesting no need for patient stratification. The developed methodology, based on detailed morphological analysis, accurate implant selection and positioning, prediction of implant micromotion and primary stability, is a novel and valuable tool to support implant design and planning of femoral reconstructive surgery.
Chondrocyte density was calculated from a defined site in each joint. Cartilage volume was measured by novel application of Peripheral Quantitative Computed Tomography (pQCT). Cartilage oligomeric matrix protein (COMP), glycos-aminoglycans (GAG) and total protein (TP) concentrations were measured and then adjusted for cartilage and synovial fluid volume and compared between joints.
The DIP had higher TP, COMP and GAG concentrations, however, when values were expressed per unit cartilage volume the opposite was found, with the MCP then exhibiting significantly higher concentrations.
The skeletal system exhibits functional adaptation. For bone the mechanotransduction mechanisms have been well elucidated; in contrast, the response of tendon to its mechanical environment is much more poorly understood despite tendon disorders being commonly encountered in clinical practice. This study presents a novel approach to developing an isolated tendon system in vivo. This model is used to test the hypothesis that stress-shielding, and subsequent restressing, causes significant biomechanical changes. We propose a control mechanism that governs this process. A custom-built external fixator was used to functionally isolate the ovine patellar tendon(PT). In group 1 animals(n=5) the right PT was stress-shielded for 6 weeks. This was achieved by drawing the patella towards the tibial tubercle, thus slackening the PT. In group 2 (n=5) the PT was stress-shielded for 6 weeks. The external fixator was then removed and the PT physiologically loaded for a further 6 weeks. In each case, the PT subsequently underwent tensile testing and measurement of length(L) and cross-sectional area(CSA). The untreated left PTs acted as controls (n=10). 6 weeks of stress-shielding significantly decreased material and structural properties of tendon compared to controls (elastic modulus(E) 76.2%, ultimate tensile strength(UTS) 69.3%, stiffness(S) 79.2%, ultimate load(UL) 68.5%, strain energy(SE) 60.7%; p<
0.05). Ultimate strain(US), L and CSA were not significantly changed. 6 weeks of subsequent functional loading (Group 2) caused some improvement in material properties, but greater recovery in structural properties (E 79.8%, UTS 91.8%, S 96.7%, UL 92.7%, SE 96.5%). CSA was significantly greater than Group 1 tendons at 114% of control value. Previous models of tendon remodelling have relied on either joint immobilization or direct surgical procedures. This model allows close control of the tendon’s mechanical environment whilst allowing normal joint movement and avoiding surgical insult to the tendon itself. The hypothesis that stress-shielding, and subsequent restressing, causes significant biomechanical changes has been upheld. We propose that the biomechanical changes observed are governed by a strain homeostasis feedback mechanism.
We examined the effect of periosteal devascularisation upon the early healing of osteotomies of sheep tibiae held in an instrumented external fixation system with an axial stiffness of 240 N/mm. At 14 days, cortical blood flow measured by the microsphere technique was 19.3 ml/min/100g in the well-vascularised osteotomies, but only 1.7 ml/min/100g in the devascularised osteotomies, despite an increase in medullary flow (p less than 0.0005). Delay in healing of the devascularised osteotomies was suggested by an in vivo monitoring system and confirmed by post-mortem mechanical testing. We suggest that the osteogenic stimulus of dynamic external fixation is dependent on the early restoration of cortical blood flow in devascularised fractures.