Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 60 - 60
1 May 2012
McGonagle L Jones M Dowson D King P Theobald P
Full Access

Frictional resistance to tendon gliding is minimised by surrounding loose areolar tissues. During periods of prolonged immobilisation, for example post tendon-repair, adhesions can form between the two adjacent tissues, thereby limiting function. Whilst agents applied during surgery are recognised to succeed in adhesion prevention, they have also been reported to provide some reduction in friction during in vitro tendon-bony pulley investigations. This study investigated the effectiveness of common anti-adhesion agents in lubricating the tendon-surrounding tissue contact by comparison with a control study. By using a validated apparatus and with reference to the Stribeck curve, it was determined that the natural in vivo contact is likely to be lubricated by a film of synovial-like fluid. Application of all anti-adhesives generated a similarly efficient lubricating system, and hence administration of these agents should be encouraged to all regions of the tendon disrupted during surgery. Minimising frictional resistance to gliding will reduce the likelihood of tendon ‘gapping’ - and subsequently failure - at the repair site.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 2 | Pages 280 - 285
1 Mar 1996
Wroblewski BM Siney PD Dowson D Collins SN

We report the findings from independent prospective clinical and laboratory-based joint-simulator studies of the performance of ceramic femoral heads of 22.225 mm diameter in cross-linked polyethylene (XLP) acetabular cups. We found remarkable qualitative and quantitative agreement between the clinical and simulator results for the wear characteristics with time, and confirmed that ceramic femoral heads penetrate the XLP cups at only about half the rate of otherwise comparable metal heads.

In the clinical study, 19 hips in 17 patients were followed for an average of 77 months. In the hip-joint simulator a similar prosthesis was tested for 7.3 million cycles.

Both clinical and simulator results showed relatively high rates of penetration over the first 18 months or 1.5 million cycles, followed by a very much lower wear thereafter. Once an initial bedding-in of 0.2 mm to 0.4 mm had taken place the subsequent rates of penetration were very small. The initial clinical wear during bedding-in averaged 0.29 mm/year; subsequent progression was an order of magnitude lower at about 0.022 mm/year, lower than the 0.07 mm/year in metal-to-UHMWP Charnley LFAs.

Our results show the excellent tribological features of alumina-ceramic-to-XLP implants, and also confirm the value of well-designed joint simulators for the evaluation of total joint replacements.