Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 35 - 35
1 Nov 2016
Nooh A Zhang Y Sato D Dong Z Siegel P Barralet J Weber M
Full Access

Bone metastases are the most common cause of cancer-related pain and often lead to other complications such as pathological fractures and spinal cord compression. Bisphosphonates (BP) are a class of potent anti-resorptive agents commonly prescribed to retard osteoporosis progression. Interestingly, BP may have indirect anti-tumour properties through negative effects on macrophages, osteoclasts, endothelial cells and their ability to suppress matrix metalloproteinase (MMP) activity. Currently, the use of bisphosphonates for cancer therapy is generally restricted to high dose systemic delivery. The purpose of this study was to investigate the effects of direct local delivery of Zoledronate at the metastatic site in a mouse model of breast cancer metastasis to bone.

Seven days following intra-tibial inoculation with MDA-MB-231 (N = 1× 105) breast cancer cells in athymic mice, the experimental group (N = 11) was treated by direct infusion of 2µg of Zoledronate into the tibial lesion (three times/week for three weeks) and compared to vehicle-treated mice (N = 5). The formation of bone metastases and growth of the lesions were followed up by weekly bioluminescence imaging. In a subsequent experiment, a comparison of the effects of local versus systemic delivery of Zoledronate on the formation of osteolytic bone metastases was carried in athymic mice (N = 15). Seven days following intra-tibial inoculation with MDA-MB-231 breast cancer cells, the systemic group (N = 5) was treated with Zoledronate (0.025mg/kg) once per week for four weeks and compared to systemic delivery of vehicle (N = 4). Following treatment, the mice were sacrificed, and micro-CT images of the right tibia were obtained. Bone volume to tissue volume ratio (BV/TV%) was determined using µ-CT biomarkers.

The first experiment showed a statistically significant increase in mean bone volume/tissue volume ratio% (BV/TV%) in the treated group (7.0±1.54%) as compared to the control group (3.8±0.48%) (P <0.001, 95%CI=1.9–4.3). This corresponded to a net increase of 84.21% in response to Zoledronate treatment. Comparison between the local and systemic effects of Zoledronate also revealed a significant increase in the BV/TV% in the locally treated group (6.69±0.62%) when compared to the cohort administered systemic bisphosphonate treatment (4.03±0.44%) (P<0.001, 95%CI=1.24–3.20), corresponding to a net increase of 66.0%.

These preliminary results suggest that high dose sustained release of Zoledronate can lead to a significant inhibition of tumor-induced osteolysis. Moreover, comparison between local and systemic delivery revealed that the effect of local bisphosphonate administration exceeds the benefits of systemic delivery in terms of osteolysis inhibition. Lastly, the noted effects of Zoledronate local delivery triggers the need for further assessment of its anti-tumour activity.