Develop a methodology to assess the long term mechanical behavior of intervertebral discs by utilizing novel sequential state testing. Bovine functional spinal units were sequentially mechanically tested in (1) native (n=8), (2) degenerated (n=4), and (3) treated states (n=4). At stage (2), artificial degeneration was created using rapid enzymatic degeneration, followed by a 24 hour hold period under static load at 42°C. At stage (3), nucleus augmentation treatments were injected with a hydrogel or a ‘sham’ (water, chondroitin sulfate) injection. The mechanical protocol employed applied a static load hold period followed by cyclic compressive loading between ∼350 and 750 N at 1 Hz. 1000 cycles were applied at each stage, and the final test on each specimen was extended up to 20000 cycles. To verify if test time can be reduced, functions were fitted using stiffness data up to 100, 1000, 2500, 5000, 10000 and 20000 cycles. Linear regression for the native specimens comparing the stiffness at various cycles to the stiffness at 20000 cycles was completed.Abstract
Objectives
Methods