In orthopaedic surgery, as in many other surgical fields, there is a clear tendency towards the use of minimally invasive procedures. These techniques are increasingly being implemented almost routinely for procedures such as spine and pelvis surgery. However, for fracture treatment and for applications involving small bones, such as hand and foot surgery, these systems are hardly ever used. We introduce a new system for image based guidance in traumatology. We included 20 patients with a fracture of the fifth metatarsal. They were randomised on admission into two groups. Ten patients in the metatarsal group were operated conventionally and ten were operated with the assistance of a new image guidance system. This system is based on 2D-fluoro images which are acquired with a conventional c-arm and are transferred to the system workstation. After detecting marked tools, it can be used to display trajectories for K-wire guidance in the c-arm shot. The average duration of surgery (time from incision to suture) in the image-based group was 12.7 minutes ± 5.5 (min. 6, max. 23), in the conventional group it was 17 minutes ± 6.5 (min. 7, max. 28) (p=0.086). The average duration of radiation was 18 seconds ± 8.5 (min. 6, max 36) in the image-based group vs. 32.4 seconds ± 19.4 (min. 12, max. 66) in the conventional group (p=0.057). An average of 4.7 C-arm shots ± 2 (min 2, max 9) were necessary in the image-based group to position the K-wire. For the conventional group, 8.2 shots ± 2.3 (min 4, max 12) were used (p=0.0073). It took 1.6 trials ± 0.7 (min.1, max. 3) to position the K-wire for the image-based procedures, in the conventional group 2.7 trials ± 0.9 (min. 1, max 4) were necessary (p=0.0084). There were no malfunctions or adverse events in any of the image-based navigational cases. No screws needed to be replaced in the image-based group. In the conventional group, two screws were replaced intra-operatively because they were too short in the control c-arm shot, and the screw threads did not bridge the fracture gap completely, leading to insufficient compression. In this pilot study with only a small sample size, the image-based guidance system could be integrated into the existing surgical workflow and was used for applications, where existing navigation systems are not commonly used. The technology gives the surgeon additional information and can reduce the number of trials for perfect implant positioning. This potentially increases the safety of the surgical procedure and spares intact bone substance which is essential for the footing of implants in small bones and fragment fixation. Whether these factors contribute to a reduction in complications or revision rate must be confirmed in larger prospective studies.
Against this background, the hypothesis is formulated that functional disturbances in the form of pathological activities of the neck muscles occur as a result of a whiplash injury of the cervical spine. These pathological muscle activities can be demonstrated electromyographically and differ from the patterns of activity of healthy subjects.
A subsequent study was conducted to validate the results that had been obtained. For this purpose, the electromyographical activity of the semispinalis capitis muscle was recorded in another subject group (n=20) and patients with acute symptoms as a result of a whiplash injury of the cervical spine (QTF grade II) (n=35).
Subjects in our study, for instance, show a decrease in electrical activity during flexion and the resulting stretching of the semispinalis capitis muscle, while the same movement causes an increase in activity in patients. On the basis of these differences, 93 % of subjects (specificity) and 83 % of patients (sensitivity) could be classified correctly with a discriminance analysis. In the second study, the specificity was 88 % while a sensitivity of 86 % was determined in the acute patient population.
Frontal collisions (n=13): The median delta-V for frontal collisions is 24 km/h (min=8 km/h; max=50 km/h). 4 individuals reported symptoms. Under delta-V 20, one individual had a fractured cervical vertebra (QTF IV). Side collisions (n=19): The median delta-V for side collisions is 12 km/h (min=4 km/h; max=59,3 km/h). 9 individuals reported symptoms. Under delta-V 10 km/h, two patients had symptoms (QTF II and QTF IV (fracture).